
NVIDIA OptiX 8.1

Programming Guide

22 October 2024

Version 1.17

NVIDIA OptiX 8.1 – Programming Guide

Copyright 2024 Document build number CL35015255

ii NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

Contents

Preface 1

Terms used in this document . 1

1 Overview 3

2 Basic concepts and definitions 5

2.1 Program . 5

2.2 Program and data model . 5

2.2.1 Shader binding table . 6

2.2.2 Ray payload . 7

2.2.3 Primitive attributes . 7

2.2.4 Buffer . 7

2.3 Acceleration structures . 7

2.4 Opacity micromaps . 7

2.5 Traversing the scene graph . 8

2.6 Ray tracing with NVIDIA OptiX . 9

3 Implementation principles 11

3.1 Error handling . 11

3.2 Thread safety . 11

3.3 Stateless model . 11

3.4 Asynchronous execution . 11

3.5 Opaque types . 11

3.6 Function table and entry function . 11

4 Context 15

4.1 Sending messages with a callback function . 16

4.2 Compilation caching . 17

4.3 Validation mode . 18

5 Acceleration structures 19

5.1 Primitive build inputs . 22

5.2 Curve build inputs . 25

5.3 Sphere build inputs . 26

5.4 Instance build inputs . 27

5.5 Build flags . 28

5.6 Dynamic updates . 29

5.7 Relocation . 30

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide iii

5.8 Compacting acceleration structures . 32

5.9 Traversable objects . 34

5.9.1 Traversal of a single geometry acceleration structure . 35

5.10 Motion blur . 35

5.10.1 Basics . 36

5.10.2 Motion geometry acceleration structure . 37

5.10.3 Motion instance acceleration structure . 38

5.10.4 Motion matrix transform . 40

5.10.5 Motion scale/rotate/translate transform . 40

5.10.6 Transforms trade-offs . 42

5.11 Opacity micromaps . 43

5.11.1 Opacity micromap arrays . 43

5.11.2 Usage . 46

5.11.2.1 Construction of the geometry acceleration structure 46

5.11.2.2 Traversal . 47

5.11.3 Encoding . 48

5.12 Displaced micro-meshes . 49

5.12.1 Displaced micro-meshes . 49

5.12.2 Displacement micro-maps . 52

5.12.2.1 Displacements blocks . 54

5.12.2.1.1 Uncompressed displacement block format . 56

5.12.2.1.2 Compressed displacement block formats . 56

5.12.2.2 Edge decimation . 58

5.12.3 Displaced micro-mesh API . 59

5.12.3.1 Displacement micro-map arrays . 59

5.12.3.2 Geometry acceleration structure build for DMM triangles 61

6 Program pipeline creation 63

6.1 Program input . 64

6.2 Programming model . 65

6.3 Module creation . 67

6.4 Pipeline launch parameter . 68

6.4.1 Parameter specialization . 69

6.5 Program group creation . 72

6.6 Pipeline linking . 74

6.7 Pipeline stack size . 75

6.7.1 Constructing a path tracer . 77

6.8 Compilation cache . 78

7 Shader binding table 79

7.1 Records . 79

7.2 Layout . 80

7.3 Acceleration structures . 81

7.3.1 SBT instance offset . 82

iv NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

7.3.2 SBT geometry-AS index . 82

7.3.3 SBT trace offset . 83

7.3.4 SBT trace stride . 83

7.3.5 Example SBT for a scene . 83

7.4 SBT record access on device . 85

8 Shader execution reordering 87

8.1 Introduction . 87

8.2 API overview . 88

8.2.1 optixReorder . 88

8.2.2 optixReorder and raytracing . 88

8.2.3 Hit objects . 89

8.2.4 Coherence hints . 94

8.2.5 More ways to use the hit object . 96

8.3 Best practices . 97

8.3.1 When to use (and when not to use) reordering . 97

8.3.2 Optimizing warp coherence . 98

8.3.3 Optimizing live state . 98

8.3.4 Using coherence hint bits judiciously . 99

8.3.5 Tailoring payload types to invoked shaders . 99

8.4 API Reference . 99

8.4.1 Querying optixReorder behavior . 99

8.4.1.1 optixTraverse . 100

8.4.1.2 optixMakeHitObject . 101

8.4.1.3 optixMakeHitObjectWithRecord . 101

8.4.1.4 optixMakeMissHitObject . 102

8.4.1.5 optixMakeNopHitObject . 102

8.4.1.6 optixInvoke . 102

8.4.1.7 The hit object’s state . 103

8.4.2 optixReorder . 103

8.4.2.1 Interaction with payload semantic types . 104

9 Curves and spheres 107

9.1 Differences between curves, spheres, and triangles . 107

9.2 Splitting curve segments . 108

9.3 Curves and the hit program . 108

9.4 Spheres and the hit program . 109

9.5 Interpolating curve endpoints . 109

9.6 Back-face culling . 110

9.7 Limitations . 111

10 Ray generation launches 113

11 Limits 115

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide v

12 Device-side functions 117

12.1 Launch index . 120

12.2 Trace . 120

12.3 Payload access . 122

12.4 Reporting intersections and attribute access . 123

12.5 Ray information . 124

12.6 Undefined values . 124

12.7 Intersection information . 125

12.8 SBT record data . 126

12.9 Vertex random access . 126

12.9.1 Displaced micro-mesh triangle vertices . 127

12.10 Geometry acceleration structure motion options . 128

12.11 Transform list . 129

12.12 Instance random access . 131

12.13 Terminating or ignoring traversal . 132

12.14 Exceptions . 132

13 Payload 135

14 Callables 139

14.1 Callable programs . 139

14.2 Implementing a callable program . 140

14.3 Non-inlined functions . 140

15 NVIDIA AI Denoiser 141

15.1 Functions and data structures for denoising . 142

15.1.1 Structure and use of image buffers . 145

15.1.2 Temporal denoising modes . 146

15.1.3 Allocating denoiser memory . 147

15.1.4 Using the denoiser . 149

15.1.5 Calculating the HDR average color of the AOV model 151

15.1.6 Calculating the HDR intensity parameter . 152

15.2 Using image tiles with the denoiser . 153

vi NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

Preface

DirectX Raytracing (DXR),1 Vulkan2 (through the VK_NV_ray_tracing extension) and the

NVIDIA OptiX™ API3 employ a similar programming model to support ray tracing

capabilities. DXR and Vulkan enable ray tracing effects in raster-based gaming and

visualization applications. NVIDIA OptiX is intended for ray tracing applications that use

NVIDIA® CUDA® technology, such as:

• Film and television visual effects

• Computer-aided design for engineering and manufacturing

• Light maps generated by path tracing

• High-performance computing

• LIDAR simulation

NVIDIA OptiX also includes support for motion blur and multi-level transforms, features

required by ray-tracing applications designed for production-quality rendering.

Terms used in this document

This document and the OptiX API use abbreviations for the software components of OptiX.

The nine types of user-defined ray interactions, called programs, are abbreviated as follows:

Program type Abbreviation

Ray generation RG

Intersection IS

Any hit AH

Closest hit CH

Miss MS

Exception EX

Direct callable DC

Continuation callable CC

The NVIDIA OptiX program types resemble shaders in traditional rendering systems; the

term “shader” is sometimes used in the names of API elements.

1. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

2. https://www.khronos.org/vulkan/

3. https://developer.nvidia.com/optix/

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 1

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://www.khronos.org/vulkan/
https://developer.nvidia.com/optix/

The geometry of the scene to be rendered is optimized for ray tracing through acceleration

structures:

Acceleration structure type Abbreviation in this document Abbreviation in the API

Geometry acceleration structure geometry-AS GAS

Instance acceleration structure instance-AS IAS

Acceleration structures in general AS

Bottom-level acceleration structure

(DXR and Vulkan)

BLAS

Top-level acceleration structure

(DXR and Vulkan)

TLAS

The relationship of NVIDIA OptiX programs and the elements of the acceleration structures

with which they interact are defined in the shader binding table, abbreviated as “SBT”. (Note

that “shader” in this context refers to an NVIDIA OptiX “program.”) No other terms

associated with the shader binding table are abbreviated.

Other abbreviations in the document include:

Term Abbreviation

application programming interface API

axis-aligned bounding box AABB

graphics processing unit GPU

high dynamic range HDR

just-in-time JIT

low dynamic range LDR

multiple instruction, multiple data MIMD

parallel thread execution PTX

scaling, rotation, translation SRT

streaming assembly [language] SASS

streaming multiprocessor SM

In this document and in the names of API elements, the “host” is the processor that begins

execution of an application. The “device” is the GPU with which the host interacts. A “build”

is the creation of an acceleration structure on the device as initiated by the host.

2 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

1 Overview

The NVIDIA OptiX API is a CUDA-centric API that is invoked by a CUDA-based application.

The API is designed to be stateless, multi-threaded and asynchronous, providing explicit

control over performance-sensitive operations like memory management and shader

compilation.

It supports a lightweight representation for scenes that can represent instancing, vertex- and

transform-based motion blur, with built-in triangles, built-in swept curves, built-in spheres,

and user-defined primitives. The API also includes highly-tuned kernels and neural networks

for machine-learning-based denoising.

An NVIDIA OptiX context controls a single GPU. The context does not hold bulk CPU

allocations, but like CUDA, may allocate resources on the device necessary to invoke the

launch. It can hold a small number of handle objects that are used to manage expensive

host-based state. These handle objects are automatically released when the context is

destroyed. Handle objects, where they do exist, consume a small amount of host memory

(typically less than 100 kilobytes) and are independent of the size of the GPU resources being

used. For exceptions to this rule, see “Program pipeline creation” (page 63).

The application invokes the creation of acceleration structures (called builds), compilation,

and host-device memory transfers. All API functions employ CUDA streams and invoke

GPU functions asynchronously, where applicable. If more than one stream is used, the

application must ensure that required dependencies are satisfied by using CUDA events to

avoid race conditions on the GPU.

Applications can specify multi-GPU capabilities with a few different recipes. Multi-GPU

features such as efficient load balancing or the sharing of GPU memory via NVLINK must be

handled by the application developer.

For efficiency and coherence, the NVIDIA OptiX runtime—unlike CUDA kernels—allows the

execution of one task, such as a single ray, to be moved at any point in time to a different lane,

warp or streaming multiprocessor (SM). (See section “Kernel Focus”1 in the CUDA Toolkit

Documentation.2) Consequently, applications cannot use shared memory, synchronization,

barriers, or other SM-thread-specific programming constructs in their programs supplied to

OptiX.

The NVIDIA OptiX programming model provides an API that future-proofs applications: as

new NVIDIA hardware features are released, existing programs can use them. For example,

software-based ray tracing algorithms can be mapped to hardware when support is added or

mapped to software when the underlying algorithms or hardware support such changes.

1. https://docs.nvidia.com/cuda/cuda-gdb/index.html#kernel-focus

2. https://docs.nvidia.com/cuda/

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 3

https://docs.nvidia.com/cuda/cuda-gdb/index.html#kernel-focus
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/

1 Overview

4 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

2 Basic concepts and de�nitions

2.1 Program

In NVIDIA OptiX, a program is a block of executable code on the GPU that represents a

particular shading operation. This is called a shader in DXR and Vulkan. For consistency with

prior versions of NVIDIA OptiX, the term program is used in the current documentation. This

term also serves as a reminder that these blocks of executable code are programmable

components in the system that can do more than shading. See “Program input” (page 64).

2.2 Program and data model

NVIDIA OptiX implements a single-ray programming model with ray-generation, any-hit,

closest-hit, miss and intersection programs.

The ray tracing pipeline provided by NVIDIA OptiX is implemented by eight types of

programs:

Ray generation

The entry point into the ray tracing pipeline, invoked by the system in parallel for each

pixel, sample, or other user-defined work assignment. See “Ray generation launches”

(page 113).

Intersection

Implements a ray-primitive intersection test, invoked during traversal. See “Traversing

the scene graph” (page 8) and “Ray information” (page 124).

Any hit

Called when a traced ray finds a new, potentially closest, intersection point, such as for

shadow computation. See “Ray information” (page 124).

Closest hit

Called when a traced ray finds the closest intersection point, such as for material

shading. See “Constructing a path tracer” (page 77).

Miss

Called when a traced ray misses all scene geometry. See “Constructing a path tracer”

(page 77).

Exception

Exception handler, invoked for conditions such as stack overflow and other errors. See

“Exceptions” (page 132).

Direct callables

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 5

2 Basic concepts and de�nitions 2.2 Program and data model

Similar to a regular CUDA function call, direct callables are called immediately. See

“Callables” (page 139).

Continuation callables

Unlike direct callables, continuation callables are executed by the scheduler. See

“Callables” (page 139).

The ray-tracing “pipeline” is based on the interconnected calling structure of the eight

programs and their relationship to the search through the geometric data in the scene, called a

traversal. Figure 2.1 is a diagram of these relationships:

Ray generation

callable
Continuation

Direct callable

Miss Closest-hit Any-hit

IntersectionIntersectionScene traversal

Fig. 2.1 - Relationship of NVIDIA OptiX programs. Green represents fixed functions; gray
represents user programs.

In Figure 2.1, green represents fixed-function, hardware-accelerated operations, while gray

represents user programs. The built-in or user-provided exception program may be called

from any program or scene traversal in case of an exception if exceptions are enabled.

2.2.1 Shader binding table

The shader binding table connects geometric data to programs and their parameters. A record is

a component of the shader binding table that is selected during execution by using offsets

specified when acceleration structures are created and at runtime. A record contains two data

regions, header and data.

Record header

• Opaque to the application, filled in by optixSbtRecordPackHeader

• Used by NVIDIA OptiX to identify programmatic behavior. For example, a primitive

would identify the intersection, any-hit, and closest-hit behavior for that primitive in the

header.

Record data

• Opaque to NVIDIA OptiX

• User data associated with the primitive or programs referenced in the headers can be

stored here, for example, program parameter values.

6 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

2.3 Acceleration structures 2 Basic concepts and de�nitions

2.2.2 Ray payload

The ray payload is used to pass data between optixTrace and the programs invoked during

ray traversal. Payload values are passed to and returned from optixTrace, and follow a

copy-in/copy-out semantic. There is a limited number of payload values, but one or more of

these values can also be a pointer to stack-based local memory, or application-managed

global memory. See “Payload” (page 135).

2.2.3 Primitive attributes

Attributes are used to pass data from intersection programs to the any-hit and closest-hit

programs. Triangle intersection provides two predefined attributes for the barycentric

coordinates (U,V). User-defined intersections can define a limited number of other attributes

that are specific to those primitives.

2.2.4 Bu�er

NVIDIA OptiX represents GPU information with a pointer to GPU memory. References to the

term “buffer” in this document refer to this GPU memory pointer and the associated memory

contents. Unlike NVIDIA OptiX 6, the allocation and transfer of buffers is explicitly

controlled by user code.

2.3 Acceleration structures

NVIDIA OptiX acceleration structures are opaque data structures built on the device.

Typically, they are based on the bounding volume hierarchy1 model, but implementations and

the data layout of these structures may vary from one GPU architecture to another.

NVIDIA OptiX provides two basic types of acceleration structures:

Geometry acceleration structures

• Built over primitives (triangles, curves, spheres, or user-defined primitives)

Instance acceleration structures

• Built over other objects such as acceleration structures (either type) or motion transform

nodes

• Allow for instancing with a per-instance static transform

2.4 Opacity micromaps

NVIDIA OptiX opacity micromaps are opaque data structures built on the device. An opacity

micromap specifies detailed opacity information for a triangle. See “Opacity micromaps”

(page 43).

1. https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 7

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

2 Basic concepts and de�nitions 2.5 Traversing the scene graph

2.5 Traversing the scene graph

To determine the intersection of geometric data by a ray, NVIDIA OptiX searches a graph of

nodes composed of acceleration structures and transformations. This search is called a

traversal; the nodes in the graph are called traversable objects or traversables.

The following types of traversable objects exist:

• An instance acceleration structure

• A geometry acceleration structure (as a root for graph with a single geometry

acceleration structure (see Traversal of a single geometry acceleration structure (page 35))

• Static transform

• Matrix motion transform

• Scaling, rotation, translation (SRT) motion transform

For transformation traversables, the corresponding transformation applies to all descendant

child traversables (the sub graph spanned by the child of the transformation traversable). The

transformation traversables should only be used in case of motion as applying

transformations to geometry is order dependent and motion transformations are time

dependent. Static transformations are available as they cannot be merged with any motion

transformation due to time-dependency, but should be merged with instance transformations

(if desired as the child of an instance) or any other static transformation (i.e., there should be

at most one static transformation following a motion transformation). For example, Figure 2.2

combines both types:

motion transform
Scale / rotate / translate

motion transform
Matrix

structure
acceleration

Instance

structure
acceleration

Geometry

structure
acceleration

Instance

transform
Static

structure
acceleration

Geometry

structure
acceleration

Geometry

structure
acceleration

Geometry

Fig. 2.2 - Example graph of traversables for a scene containing static as well as dynamic
motion-transform driven objects

OptiX uses handles as references to traversable objects. These traversable handles are 64-bit

opaque values that are generated from device memory pointers for the graph nodes. The

handles identify the connectivity of these objects. All calls to optixTrace begin at a

traversable handle.

8 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

2.6 Ray tracing with NVIDIA OptiX 2 Basic concepts and de�nitions

Note: DXR and VulkanRT use the terms top-level acceleration structure and bottom-level

acceleration structure. A bottom-level acceleration structure is the same as a geometry

acceleration structure; a top-level acceleration structure is similar to an instance

acceleration structure. Traversing against a single geometry acceleration structure,

motion transform nodes, or nested instance acceleration structures (multi-level

instancing) are not supported in DXR or VulkanRT. In NVIDIA OptiX, the terms were

changed due to the additional possible configurations of scene graphs beyond the strict

two-level, top-bottom configurations supported by DXR and VulkanRT. (See DirectX

Raytracing (DXR) Functional Spec.2)

2.6 Ray tracing with NVIDIA OptiX

A functional ray tracing system is implemented by combining four components as described

in the following steps:

1. Create one or more acceleration structures over one or many geometry meshes and

instances of these meshes in the scene. See “Acceleration structures” (page 19).

2. Create a pipeline of programs that contains all programs that will be invoked during a

ray tracing launch. See “Program pipeline creation” (page 63).

3. Create a shader binding table that includes references to these programs and their

parameters and choose a data layout that matches the implicit shader binding table

record selection of the instances and geometries in the acceleration structures. See

“Shader binding table” (page 79).

4. Launch a device-side kernel that will invoke a ray generation program with a multitude

of threads calling optixTrace to begin traversal and the execution of the other

programs. See “Ray generation launches” (page 113). Device-side functionality is

described in “Device-side functions” (page 117).

Ray tracing work can be interleaved with other CUDA work to generate data, move data to

and from the device, and move data to other graphics APIs. It is the application’s

responsibility to coordinate all work on the GPU. NVIDIA OptiX does not synchronize with

any other work.

2. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#geometry-and-acceleration-structures

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 9

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#geometry-and-acceleration-structures
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#geometry-and-acceleration-structures

2 Basic concepts and de�nitions 2.6 Ray tracing with NVIDIA OptiX

10 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

3 Implementation principles

3.1 Error handling

Errors are reported using enumerated return codes. An optional log callback can be

registered with the device context to receive any additional logging information.

Functions that compile can optionally take a string character buffer to report additional

messaging for errors, warnings and resource use.

3.2 Thread safety

Almost all host functions are thread-safe. Exceptions to this rule are identified in the API

documentation. A general requirement for thread-safety is that output buffers and any

temporary or state buffers are unique. For example, you can create more than one

acceleration structure concurrently from the same input geometry, as long as the temporary

and output device memory are disjoint. Temporary and state buffers are always part of the

parameter list if they are needed to execute the method.

3.3 Stateless model

Given the same input, the same output should be generated. GPU state is not held by

NVIDIA OptiX internally.

In NVIDIA OptiX functions, a CUstream is associated with the CUcontext used to create the

OptixDeviceContext. Some API functions take a CUstream as an argument. These functions

incur work on the device and require that the CUcontext associated with the

OptixDeviceContext is the current context when they are called. Applications can expect the

CUcontext to remain the same after invoking NVIDIA OptiX functions.

3.4 Asynchronous execution

Work performed on the device is issued on an application-supplied CUstream using

asynchronous CUDA methods. The host function blocks execution until all work has been

issued on the stream, but does not do any synchronization or blocking on the stream itself.

3.5 Opaque types

The API employs several opaque types, such as OptixModule and OptixPipeline. Such

values should be treated like pointers, insofar as copying these does not create new objects.

3.6 Function table and entry function

The NVIDIA OptiX library uses a function table approach to assist in the introduction of new

features in future releases while maintaining backward compatibility. To that end, it defines a

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 11

3 Implementation principles 3.6 Function table and entry function

struct OptixFunctionTable that holds pointers to all functions of the host API for a particular

version. The current version is specified in the OPTIX_ABI_VERSION macro definition.

Listing 3.1

struct OptixFunctionTable

{

OptixResult(*optixDeviceContextCreate)(
... Parameter list details omitted

);
... Struct members for other host API functions omitted

};

The NVIDIA OptiX driver library exports the symbol optixQueryFunctionTable. This

function is used to obtain pointers to the actual API functions:

Listing 3.2

OptixQueryFunctionTable_t* optixQueryFunctionTable;

... OS-speci�c code to load the library and to assign the address of the function
named “optixQueryFunctionTable” to optixQueryFunctionTable omitted

OptixFunctionTable optixFunctionTable = {};

OptixResult result = optixQueryFunctionTable(

OPTIX_ABI_VERSION, 0, 0, 0, &optixFunctionTable,

sizeof(OptixFunctionTable));
... Error check omitted

Note that the three “0 ”arguments in the example above allow for future extensions of the

entry function without changing its signature and are currently unused. A complete example

implementation of this functionality including code specific to the operating system is

provided as source code in optixInit() found in the header file optix_stubs.h.

After a successful call to optixQueryFunctionTable, the function table can be used as

follows, for example, for context creation:

Listing 3.3

CUcontext fromContext = nullptr;
... fromContext initialization omitted

OptixDeviceContextOptions options = {};
... options initialization omitted

OptixResult result = optixFunctionTable.optixDeviceContextCreate(

fromContext, &options, &context);

... Error check omitted

12 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

3.6 Function table and entry function 3 Implementation principles

Since the explicit call qualifications with the function table instance can be inconvenient,

optional stubs that wrap the addresses in the function table into C functions are provided.

These stubs are made available by including the header file optix_stubs.h. With these stubs

the previous example can be simplified as follows:

Listing 3.4

CUcontext fromContext = nullptr;
... fromContext initialization omitted

OptixDeviceContextOptions options = {};
... options initialization omitted

OptixResult result = optixDeviceContextCreate(

fromContext, &options, &context);

... Error check omitted

Using these stubs is purely optional and applications are free to implement their own solution

to make the addresses in the function table more easily available.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 13

3 Implementation principles 3.6 Function table and entry function

14 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

4 Context

The API functions described in this section are:

optixDeviceContextCreate

optixDeviceContextDestroy

optixDeviceContextGetProperty

optixDeviceContextSetLogCallback

optixDeviceContextSetCacheEnabled

optixDeviceContextSetCacheLocation

optixDeviceContextSetCacheDatabaseSizes

optixDeviceContextGetCacheEnabled

optixDeviceContextGetCacheLocation

optixDeviceContextGetCacheDatabaseSizes

A context is created by optixDeviceContextCreate and is used to manage a single GPU. The

NVIDIA OptiX device context is created by specifying the CUDA context associated with the

device. For convenience, zero can be passed and NVIDIA OptiX will use the current CUDA

context.

Listing 4.1

OptixDeviceContext context = nullptr;

cudaFree(0); Initialize CUDA for this device on this thread

CUcontext cuCtx = 0; Zero means take the current context

optixDeviceContextCreate(cuCtx, 0, &context);

Additional creation time options can also be specified with OptixDeviceContextOptions,

including parameters for specifying a callback function, log and data. (See “Sending

messages with a callback function” (page 16).)

A small set of context properties exist for determining sizes and limits. These are queried

using optixDeviceContextGetProperty. Such properties include maximum trace depth,

maximum traversable graph depth, maximum primitives per build input, and maximum

number of instances per acceleration structure.

The context may retain ownership of any GPU resources necessary to launch the ray tracing

kernels. Some API objects will retain host memory. These are defined with create/destroy

patterns in the API. The application must invoke optixDeviceContextDestroy to clean up

any host or device resources associated with the context. If any other API objects associated

with this context still exist when the context is destroyed, they are also destroyed.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 15

4 Context 4.1 Sending messages with a callback function

A context can hold a decryption key. When specified, the context requires user code passed

into the API to be encrypted using the appropriate session key. This minimizes exposure of

the input code to security attacks.

Note: The context decryption feature is available upon request from NVIDIA.

An application may combine any mixture of supported GPUs as long as the data transfer and

synchronization is handled appropriately. Some applications may choose to simplify

multi-GPU handling by restricting the variety of these blends, for example, by mixing only

GPUs of the same streaming multiprocessor version to simplify data sharing.

4.1 Sending messages with a callback function

A log callback and pointer to host memory can also be specified during context creation or

later by using optixDeviceContextSetLogCallback. This callback will be used to

communicate various messages. It must be thread-safe if multiple NVIDIA OptiX functions

are called concurrently.

This callback must be a pointer to a function of the following type:

Listing 4.2

typedef void(*OptixLogCallback)(

unsigned int level,

const char* tag,

const char* message,

void* cbdata);

The log level indicates the severity of the message. The tag is a terse message category

description (for example, SCENE STAT). The message is a null-terminated log message

(without a newline character at the end) and the value of cbdata, the pointer provided when

setting the callback function.

The following log levels are supported:

disable

Disables all messages. The callback function is not called in this case.

fatal

A non-recoverable error. The context, as well as NVIDIA OptiX itself, may no longer be

in a usable state.

error

A recoverable error, for example, when passing invalid call parameters.

warning

Hints that the API might not behave exactly as expected by the application or that it may

perform slower than expected.

print

Status and progress messages.

16 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

4.2 Compilation caching 4 Context

4.2 Compilation caching

Compilation of input programs will be cached to disk when creating OptixModule,

OptixProgramGroup, and OptixPipeline objects if caching has been enabled. Subsequent

compilation can reuse the cached data to improve the time to create these objects. The cache

can be shared between multiple OptixDeviceContext objects, and NVIDIA OptiX will take

care of ensuring correct multi-threaded access to the cache. If no sharing between

OptixDeviceContext objects is desired, the path to the cache can be set differently for each

OptixDeviceContext. Caching can be disabled entirely by setting the environment variable

OPTIX_CACHE_MAXSIZE to 0. Disabling the cache via the environment variable will not affect

existing cache files or their contents.

The disk cache can be controlled with:

optixDeviceContextSetCacheEnabled(..., int enabled)

When enabled has a value of 1, the disk cache is enabled; a value of 0 disables it. Note

that no in-memory cache is used when caching is disabled.

The cache database is initialized when the device context is created and when enabled

through this function call. If the database cannot be initialized when the device context is

created, caching will be disabled; a message is reported to the log callback if caching is

enabled. In this case, the call to optixDeviceContextCreate does not return an error. To

ensure that cache initialization succeeded on context creation, the status can be queried

using optixDeviceContextGetCacheEnabled. If caching is disabled, the cache can be

reconfigured and then enabled using optixDeviceContextSetCacheEnabled. If the

cache database cannot be initialized with optixDeviceContextSetCacheEnabled, an

error is returned. Garbage collection is performed on the next write to the cache

database, not when the cache is enabled.

optixDeviceContextSetCacheLocation(..., const char* location)

The disk cache is created in the directory specified by location. The value of location

must be a NULL-terminated string. The directory is created if it does not exist.

The cache database is created immediately if the cache is currently enabled. Otherwise

the cache database is created later when the cache is enabled. An error is returned if it is

not possible to create the cache database file at the specified location for any reason (for

example, if the path is invalid or if the directory is not writable) and caching will be

disabled. If the disk cache is located on a network file share, behavior is undefined.

The location of the disk cache can be overridden with the environment variable

OPTIX_CACHE_PATH. This environment variable takes precedence over the value passed

to this function when the disk cache is enabled.

The default location of the cache depends on the operating system:

Operating system Pathname

Windows %LOCALAPPDATA%\NVIDIA\OptixCache

Linux /var/tmp/OptixCache_username, or

/tmp/OptixCache_username if the first choice is not

usable. The underscore and username suffix are omitted

if the username cannot be obtained.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 17

4 Context 4.3 Validation mode

optixDeviceContextSetCacheDatabaseSizes(

..., size_t lowWaterMark, size_t highWaterMark)

Parameters lowWaterMark and highWaterMark set the low and high water marks for disk

cache garbage collection. Setting either limit to zero disables garbage collection. Garbage

collection only happens when the cache database is written. It is triggered whenever the

cache data size exceeds the high water mark and proceeding until the size reaches the

low water mark. Garbage collection always frees enough space to allow the insertion of

the new entry within the boundary of the low water mark. An error is returned if either

limit is nonzero and the high water mark is lower than the low water mark. If more than

one device context accesses the same cache database with different high and low water

mark values, the device context uses its values when writing to the cache database.

The high water mark can be overridden with the environment variable

OPTIX_CACHE_MAXSIZE. Setting OPTIX_CACHE_MAXSIZE to 0 will disable the cache.

Negative and non-integer values will be ignored.

The value of OPTIX_CACHE_MAXSIZE takes precedence over the highWaterMark value

passed to this function. The low water mark will be set to half the value of

OPTIX_CACHE_MAXSIZE.

Corresponding get* functions are supplied to retrieve the current value of these cache

properties.

4.3 Validation mode

The NVIDIA OptiX validation mode can help uncover errors which might otherwise go

undetected or which occur only intermittently and are difficult to locate. Validation mode

enables additional tests and settings during application execution. This additional processing

can reduce performance, so it should only be used during debugging or in the final testing

phase of a completed application.

Validation mode is enabled by setting a field in the OptixDeviceContextOptions struct:

Listing 4.3

OptixDeviceContextOptions options = {};

options.validationMode = OPTIX_DEVICE_CONTEXT_VALIDATION_MODE_ALL;

The error OPTIX_ERROR_VALIDATION_FAILURE is signaled if an error is caught when

validation mode is enabled. Function optixLaunch will synchronize after the launch and

report errors, if any.

Among other effects, validation mode implicitly enables all OptiX debug exceptions and

provides an exception program if none is provided. The first non-user exception caught

inside an exception program will therefore be reported and the launch terminated

immediately. This will make exceptions more visible that otherwise might be overlooked.

18 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5 Acceleration structures

The API functions described in this section are:

optixAccelComputeMemoryUsage

optixAccelBuild

optixAccelRelocate

optixConvertPointerToTraversableHandle

NVIDIA OptiX provides acceleration structures to optimize the search for the intersection of

rays with the geometric data in the scene. Acceleration structures can contain two types of

data: geometric primitives (a geometry-AS) or instances (an instance-AS). Acceleration

structures are created on the device using a set of functions. These functions enable

overlapping and pipelining of acceleration structure creation, called a build. The functions use

one or more OptixBuildInput structs to specify the geometry plus a set of parameters to

control the build.

Acceleration structures have size limits, listed in “Limits” (page 115). For an instance

acceleration structure, the number of instances has an upper limit. For a geometry

acceleration structure, the number of geometric primitives is limited, specifically the total

number of primitives in its build inputs, multiplied by the number of motion keys.

The following build input types are supported:

Instance acceleration structures

OPTIX_BUILD_INPUT_TYPE_INSTANCES

OPTIX_BUILD_INPUT_TYPE_INSTANCE_POINTERS

A geometry acceleration structure containing built-in triangles

OPTIX_BUILD_INPUT_TYPE_TRIANGLES

A geometry acceleration structure containing built-in curve primitives

OPTIX_BUILD_INPUT_TYPE_CURVES

A geometry acceleration structure containing built-in spheres

OPTIX_BUILD_INPUT_TYPE_SPHERES

A geometry acceleration structure containing custom primitives

OPTIX_BUILD_INPUT_TYPE_CUSTOM_PRIMITIVES

For geometry-AS builds, each build input can specify a set of triangles, a set of curves, a set of

spheres, or a set of user-defined primitives bounded by specified axis-aligned bounding

boxes. Multiple build inputs can be passed as an array to optixAccelBuild to combine

different meshes into a single acceleration structure. All build inputs for a single build must

agree on the build input type.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 19

5 Acceleration structures

Instance acceleration structures have a single build input and specify an array of instances.

Each instance includes a ray transformation and an OptixTraversableHandle that refers to a

geometry-AS, a transform node, or another instance acceleration structure.

To prepare for a build, the required memory sizes are queried by passing an initial set of build

inputs and parameters to optixAccelComputeMemoryUsage. It returns three different sizes:

outputSizeInBytes

Size of the memory region where the resulting acceleration structure is placed. This size

is an upper bound and may be substantially larger than the final acceleration structure.

(See “Compacting acceleration structures” (page 32).)

tempSizeInBytes

Size of the memory region that is temporarily used during the build.

tempUpdateSizeInBytes

Size of the memory region that is temporarily required to update the acceleration

structure.

Using these sizes, the application allocates memory for the output and temporary memory

buffers on the device. The pointers to these buffers must be aligned to a 128-byte boundary.

These buffers are actively used for the duration of the build. For this reason, they cannot be

shared with other currently active build requests.

Note that optixAccelComputeMemoryUsage does not initiate any activity on the device;

pointers to device memory or contents of input buffers are not required to point to allocated

memory.

The application can store custom per-acceleration-structure data (e.g. geometric normals) by

allocating a larger output buffer and storing the data before the acceleration structure. Device

programs can retrieve the application data by calling optixGetGASPointerFromHandle and

subtracting a fixed offset.

The function optixAccelBuild takes the same array of OptixBuildInput structs as

optixAccelComputeMemoryUsage and builds a single acceleration structure from these

inputs. This acceleration structure can contain either geometry or instances, depending on the

inputs to the build.

The build operation is executed on the device in the specified CUDA stream and runs

asynchronously on the device, similar to CUDA kernel launches. The application may choose

to block the host-side thread or synchronize with other CUDA streams by using available

CUDA synchronization functionality such as cudaStreamSynchronize or CUDA events. The

traversable handle returned is computed on the host and is returned from the function

immediately, without waiting for the build to finish. By producing handles at acceleration

time, custom handles can also be generated based on input to the builder.

The acceleration structure constructed by optixAccelBuild does not reference any of the

device buffers referenced in the build inputs. All relevant data is copied from these buffers

into the acceleration output buffer, possibly in a different format.

20 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5 Acceleration structures

The application is free to release this memory after the build without invalidating the

acceleration structure. However, instance-AS builds will continue to refer to other

instance-AS and geometry-AS instances and transform nodes.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 21

5 Acceleration structures 5.1 Primitive build inputs

The following example uses this sequence to build a single acceleration structure:

Listing 5.1

OptixAccelBuildOptions accelOptions = {};

OptixBuildInput buildInputs[2];

CUdeviceptr tempBuffer, outputBuffer;

size_t tempBufferSizeInBytes, outputBufferSizeInBytes;

memset(accelOptions, 0, sizeof(OptixAccelBuildOptions));

accelOptions.buildFlags = OPTIX_BUILD_FLAG_NONE;

accelOptions.operation = OPTIX_BUILD_OPERATION_BUILD;

accelOptions.motionOptions.numKeys = 0; A numKeys value of zero speci�es no
motion blur

memset(buildInputs, 0, sizeof(OptixBuildInput) * 2);
Initialize
buildInputs
memory to 0

... Setup build inputs; see below.

OptixAccelBufferSizes bufferSizes = {};

optixAccelComputeMemoryUsage(optixContext, &accelOptions,

buildInputs, 2, &bufferSizes);

void* d_output;

void* d_temp;

cudaMalloc(&d_output, bufferSizes.outputSizeInBytes);

cudaMalloc(&d_temp, bufferSizes.tempSizeInBytes);

OptixTraversableHandle outputHandle = 0;

OptixResult results = optixAccelBuild(optixContext, cuStream,

&accelOptions, buildInputs, 2, d_temp,

bufferSizes.tempSizeInBytes, d_output,

bufferSizes.outputSizeInBytes, &outputHandle, nullptr, 0);

To ensure compatibility with future versions, the OptixBuildInput structure should be

initialized with zeros before populating it with specific build inputs.

5.1 Primitive build inputs

A triangle build input references an array of triangle vertex buffers in device memory, one

buffer per motion key (a single triangle vertex buffer if there is no motion). (See “Motion

blur” (page 35).) Optionally, triangles can be indexed using an index buffer in device

memory. Various vertex and index formats are supported as input, but may be transformed to

an internal format (potentially of a different size than the input) that is more efficient.

22 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.1 Primitive build inputs 5 Acceleration structures

For example:

Listing 5.2

OptixBuildInputTriangleArray& buildInput =

buildInputs[0].triangleArray;

buildInput.type = OPTIX_BUILD_INPUT_TYPE_TRIANGLES;

buildInput.vertexBuffers = &d_vertexBuffer;

buildInput.numVertices = numVertices;

buildInput.vertexFormat = OPTIX_VERTEX_FORMAT_FLOAT3;

buildInput.vertexStrideInBytes = sizeof(float3);

buildInput.indexBuffer = d_indexBuffer;

buildInput.numIndexTriplets = numTriangles;

buildInput.indexFormat = OPTIX_INDICES_FORMAT_UNSIGNED_INT3;

buildInput.indexStrideInBytes = sizeof(int3);

buildInput.preTransform = 0;

The preTransform is an optional pointer to a 3x4 row-major transform matrix in device

memory. The pointer needs to be aligned to 16 bytes; the matrix contains 12 floats. If specified,

the transformation is applied to all vertices at build time with no runtime traversal overhead.

A curves build input or a spheres build input is similar to a triangle build input; see “Curve

build inputs” (page 25), “Sphere build inputs” (page 26).

The acceleration structure build input for custom primitives uses the type

OptixBuildInputCustomPrimitiveArray. Each custom primitive is represented by an

axis-aligned bounding box (AABB), which is a rectangular solid defined by ranges of x, y, and z

values, and which must completely enclose the primitive. The memory layout of an AABB is

defined in the struct OptixAabb. The AABBs are organized in an array of buffers in device

memory, with one buffer per motion key. The precise shape of each custom primitive will be

depend on the intersection program in its SBT record.

Listing 5.3

OptixBuildInputCustomPrimitiveArray& buildInput =

buildInputs[0].customPrimitiveArray;

buildInput.type = OPTIX_BUILD_INPUT_TYPE_CUSTOM_PRIMITIVES;

buildInput.aabbBuffers = d_aabbBuffer;

buildInput.numPrimitives = numPrimitives;

The optixAccelBuild function accepts multiple build inputs per call, but they must be all

triangle inputs, all curve inputs, all sphere inputs, or all AABB inputs. Mixing build input

types in a single geometry-AS is not allowed.

Each build input maps to one or more consecutive records in the shader binding table (SBT),

which controls program dispatch. (See “Shader binding table” (page 79).) If multiple records

in the SBT are required, the application needs to provide a device buffer with per-primitive

SBT record indices for that build input. If only a single SBT record is requested, all primitives

reference this same unique SBT record. Note that there is a limit to the number of referenced

SBT records per geometry-AS. (Limits are discussed in “Limits” (page 115).)

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 23

5 Acceleration structures 5.1 Primitive build inputs

For example:

Listing 5.4

buildInput.numSbtRecords = 2;

buildInput.sbtIndexOffsetBuffer =

d_sbtIndexOffsetBuffer;
Values must be in range [0,1] for two SBT
records

buildInput.sbtIndexOffsetSizeInBytes = sizeof(int);
1-4 byte unsigned
integer o�sets
allowed

buildInput.sbtIndexOffsetStrideInBytes = sizeof(int);

Each build input also specifies an array of OptixGeometryFlags, one for each SBT record.

The flags for one record apply to all primitives mapped to this SBT record.

For example:

Listing 5.5

unsigned int flagsPerSBTRecord[2];

flagsPerSBTRecord[0] = OPTIX_GEOMETRY_FLAG_NONE;

flagsPerSBTRecord[1] = OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT;
...

buildInput.flags = flagsPerSBTRecord;

The following flags are supported:

OPTIX_GEOMETRY_FLAG_NONE

Applies the default behavior when calling the any-hit program, possibly multiple times,

allowing the acceleration-structure builder to apply all optimizations.

OPTIX_GEOMETRY_FLAG_REQUIRE_SINGLE_ANYHIT_CALL

Disables some optimizations specific to acceleration-structure builders. By default,

traversal may call the any-hit program more than once for each intersected primitive.

Setting the flag ensures that the any-hit program is called only once for a hit with a

primitive. However, setting this flag may change traversal performance. The usage of

this flag may be required for correctness of some rendering algorithms; for example, in

cases where opacity or transparency information is accumulated in an any-hit program.

OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT

Indicates that traversal should not call the any-hit program for this primitive even if the

corresponding SBT record contains an any-hit program. Setting this flag usually

improves performance even if no any-hit program is present in the SBT.

Primitives inside a build input are indexed starting from zero. This primitive index is

accessible inside the intersection, any-hit, and closest-hit programs. If the application chooses

to offset this index for all primitives in a build input, there is no overhead at runtime. This can

be particularly useful when data for consecutive build inputs is stored consecutively in

device memory. The primitiveIndexOffset value is only used when reporting the

intersection primitive.

24 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.2 Curve build inputs 5 Acceleration structures

For example:

Listing 5.6

buildInput[0].aabbBuffers = d_aabbBuffer;

buildInput[0].numPrimitives = ...;

buildInput[0].primitiveIndexOffset = 0;

buildInput[1].aabbBuffers = d_aabbBuffer +

buildInput[0].numPrimitives * sizeof(float) * 6;

buildInput[1].numPrimitives = ...;

buildInput[1].primitiveIndexOffset = buildInput[0].numPrimitives;

5.2 Curve build inputs

In addition to triangles and custom primitives, NVIDIA OptiX supports curves and spheres

as geometric primitives. Curves are used to represent long thin strands, such as for hair, fur,

and carpet fibers. Another variant of curves, ribbons (oriented curves), can be used for blades

of grass and similar applications. Scenes may contain thousands or millions of curves, and

they will often be no wider than a couple of pixels in the final image.

Each curve is a swept surface defined by a three-dimensional series of vertices, called control

points, and a possibly varying radius. The NVIDIA OptiX API provides curves with these

characteristics:

• Curve geometry is defined by a cubic uniform B-spline curve, a quadratic uniform

B-spline curve, a Catmull-Rom spline curve, a Bézier curve, or a series of linear

segments.

• The cross-section of the curve primitive is a circle.

• For quadratic B-spline curves the cross-section can also be a straight line segment which

allows to represent flat oriented curves, called ribbons. These are ruled surfaces which

are formed by sweeping a moving straight line along the curve axis.

• A radius is specified at each control point. The radius is interpolated along the curve

using the same spline basis as position.

• For ribbons, normals can be specified but are not required.

• Linear curves have spherical end caps, with spherical “elbows” for smooth joints

between segments. By default, the ends of cubic and quadratic splines are open and do

not have end caps. Flat end caps for cubic and quadratic splines can be enabled by

setting OptixBuildInputCurveArray::endcapFlags and

OptixBuiltinISOptions::curveEndcapFlags to OPTIX_CURVE_ENDCAP_ON.

Spline curves are composed of a series of polynomial segments. Each segment is defined by

two, three, or four control points, depending on the curve type:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 25

5 Acceleration structures 5.3 Sphere build inputs

Curve type Control points per segment

Piecewise linear 2

Quadratic 3

Cubic 4

Catmull-Rom 4

Bézier 4

NVIDIA OptiX considers each polynomial segment to be a primitive, with its own primitive

ID.

A curve build input (OptixBuildInputCurveArray) references an array of vertex buffers in

device memory, one buffer per motion key (a single vertex buffer if there is no motion). (See

“Motion blur” (page 35).) Parallel to this, there is an array of radius buffers in device memory,

one buffer per motion key, providing a radius value at each control vertex at each motion key.

There is also a (required) index buffer in device memory. Ribbons can also reference optional

normal buffers that are parallel to the vertex buffers.

The B-spline control points of each curve strand will appear sequentially in the vertex buffer.

The index array contains one index per segment, namely, the index of the segment’s first

control point. For example, a cubic curve with three segments will have six vertices. The

index array might contain {10, 11, 12}, in which case the 3 segments will have control

points: {v[10], v[11], v[12], v[13]}, {v[11], v[12], v[13], v[14]} and

{v[12], v[13], v[14], v[15]}.

The vertex buffers for ribbons store quadratic B-spline control points whereas the normal

buffers contain the normals at borders of the ribbon segments. A ribbon strand with three

segments will store five control points. If normals are specified, four normals will be required

for three segments. They are linearly interpolated along the curve segments. For example, the

ribbon strand might have indices {0, 1, 2}. In this case, the control points of the segments

would be {v[0], v[1], v[2]}, {v[1], v[2], v[3]} and {v[2], v[3], v[4]}, the

normals {n[0], n[1]}, {n[1], n[2]} and {n[2], n[3]}. The segment with index i will

use control points {v[i], v[i+1], v[i+2]} and normals {n[i], n[i+1]}. Note that there

is one more control point than normals in the ribbon strand. Since the indices are used for

addressing both vertices and normals, the normals need to be padded with an unused vector

at the end of the strand.

End caps appear at the ends of strands. NVIDIA OptiX detects the strands by checking the

overlap of segment control points. Within a B-spline strand, adjacent segments overlap all but

one of their control points. In other words, unless indexArray[N+1] is equal to

indexArray[N]+1, segment N is the end of one strand and segment N+1 is the beginning of

another.

See also “Differences between curves, spheres, and triangles” (page 107) .

5.3 Sphere build inputs

Similar to curves, NVIDIA OptiX supports spheres as geometric primitives. Spheres can be

used in different applications to represent, for example, molecules, spray, or smoke.

26 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.4 Instance build inputs 5 Acceleration structures

Each sphere is defined by a three-dimensional center point and a radius.

A sphere build input (OptixBuildInputSphereArray) references an array of vertex buffers in

device memory storing the center points, one buffer per motion key (a single vertex buffer if

there is no motion). (See “Motion blur” (page 35).) Parallel to this, there is an array of radius

buffers in device memory, one buffer per motion key, providing a radius value at each vertex

at each motion key. If all spheres have the same radius per motion key, a single radius per

radius buffer is sufficient if the singleRadius flag is set.

See also “Differences between curves, spheres, and triangles” (page 107) .

5.4 Instance build inputs

An instance build input specifies a buffer of OptixInstance structs in device memory. These

structs can be specified as an array of consecutive structs or an array of pointers to those

structs. Each instance description references:

• A child traversable handle

• A static 3x4 row-major object-to-world matrix transform

• An instance ID (user defined)

• An SBT offset

• A visibility mask

• Instance flags

Unlike the triangle and AABB inputs, optixAccelBuild only accepts a single instance build

input per build call. There are upper limits to the possible number of instances (the size of the

buffer of the OptixInstance structs), the SBT offset, the visibility mask, as well as the

user-supplied instance ID. (These limits are discussed in “Limits” (page 115).)

An example of this sequence:

Listing 5.7

OptixInstance instance = {};

float transform[12] = {1,0,0,3,0,1,0,0,0,0,1,0};

memcpy(instance.transform, transform, sizeof(float)*12);

instance.instanceId = 0;

instance.visibilityMask = 255;

instance.sbtOffset = 0;

instance.flags = OPTIX_INSTANCE_FLAG_NONE;

instance.traversableHandle = gasTraversable;

void* d_instance;

cudaMalloc(&d_instance, sizeof(OptixInstance));

cudaMemcpy(d_instance, &instance,

sizeof(OptixInstance), cudaMemcpyHostToDevice);

OptixBuildInputInstanceArray* buildInput =

&buildInputs[0].instanceArray;

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 27

5 Acceleration structures 5.5 Build �ags

buildInput->type = OPTIX_BUILD_INPUT_TYPE_INSTANCES;

buildInput->instances = d_instance;

buildInput->numInstances = 1;

The OPTIX_BUILD_INPUT_TYPE_INSTANCE_POINTERS build input is a variation on the

OPTIX_BUILD_INPUT_TYPE_INSTANCES build input where instanceDescs references a device

memory array of pointers to OptixInstance data structures in device memory.

Instance flags are applied to primitives encountered while traversing the geometry-AS

connected to an instance. The flags override any instance flags set during the traversal of

parent instance-ASs.

OPTIX_INSTANCE_FLAG_DISABLE_TRIANGLE_FACE_CULLING

Disables face culling for triangles. Overrides any culling ray flag passed to optixTrace.

OPTIX_INSTANCE_FLAG_FLIP_TRIANGLE_FACING

Flips the triangle orientation during intersection. Also affects any culling of front and

back faces.

OPTIX_INSTANCE_FLAG_DISABLE_ANYHIT

Disables any-hit calls for primitive intersections. Can be overridden by ray flags.

OPTIX_INSTANCE_FLAG_ENFORCE_ANYHIT

Forces any-hit calls for primitive intersections. Can be overridden by ray flags.

The visibility mask is combined with the ray mask to determine visibility for this instance. If

the condition rayMask & instance.mask == 0 is true, the instance is culled. The visibility

flags may be interpreted as assigning rays and instances to one of eight groups. Instances are

traversed only when the instance and ray have at least one group in common. (See “Trace”

(page 120).)

The sbtOffset is an offset into the SBT for hit groups (intersection, any-hit, closest-hit)

specified with the hitgroupRecordBase parameter of OptixShaderBindingTable. It is used

as a simple additive offset into the SBT to select the hit group programs run in case of an

intersection of a primitive part of this instance. See “Acceleration structures” (page 81) for

more detail. If the child of the instance is a transform object — an OptixStaticTransform,

OptixMatrixMotionTransform, or OptixSRTMotionTransform traversable object instead of

a geometry-AS — the instance’s sbtOffset value still applies when hitting a primitive of the

geometry-AS at the end of the chain of transforms. The maximal supported SBT offset can be

queried using optixDeviceContextGetProperty with

OPTIX_DEVICE_PROPERTY_LIMIT_MAX_SBT_OFFSET. In a traversable graph with multiple

levels of instance acceleration structure (IAS) objects the offsets are added together. That is,

the offset at a GAS is the sum of the offsets of all ancestor instances in the traversable graph.

The maximal supported summed SBT offset is equal to the maximum SBT offset for a single

instance.

5.5 Build �ags

An acceleration structure build can be controlled using the values of the OptixBuildFlags

enum. To enable random vertex access on an acceleration structure, use

OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS. (See “Vertex random access”

28 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.6 Dynamic updates 5 Acceleration structures

(page 126).) To steer trade-offs between build performance, runtime traversal performance

and acceleration structure memory usage, use OPTIX_BUILD_FLAG_PREFER_FAST_TRACE and

OPTIX_BUILD_FLAG_PREFER_FAST_BUILD. For curve primitives in particular, these flags

control splitting; see “Splitting curve segments” (page 108).

The flags OPTIX_BUILD_FLAG_PREFER_FAST_TRACE and

OPTIX_BUILD_FLAG_PREFER_FAST_BUILD are mutually exclusive. To combine multiple flags

that are not mutually exclusive, use the logical “or” operator.

5.6 Dynamic updates

Building an acceleration structure can be computationally costly. Applications may choose to

update an existing acceleration structure using modified vertex data or bounding boxes.

Updating an existing acceleration structure is generally much faster than rebuilding.

However, the quality of the acceleration structure may degrade if the data changes too much

with an update, for example, through explosions or other chaotic transitions — even if for

only parts of the mesh. The degraded acceleration structure may result in slower traversal

performance as compared to an acceleration structure built from scratch from the modified

input data.

To allow for future updates of an acceleration structure, set

OPTIX_BUILD_FLAG_ALLOW_UPDATE in the build flags when building the acceleration

structure initially.

For example:

Listing 5.8

accelOptions.buildFlags = OPTIX_BUILD_FLAG_ALLOW_UPDATE;

accelOptions.operation = OPTIX_BUILD_OPERATION_BUILD;

To update the previously built acceleration structure, set the operation to

OPTIX_BUILD_OPERATION_UPDATE and then call optixAccelBuild on the same output data.

All other options are required to be identical to the original build. The update is done in-place

on the output data.

For example:

Listing 5.9

accelOptions.buildFlags = OPTIX_BUILD_FLAG_ALLOW_UPDATE;

accelOptions.operation = OPTIX_BUILD_OPERATION_UPDATE;

void* d_tempUpdate;

cudaMalloc(&d_tempUpdate, bufferSizes.tempUpdateSizeInBytes);

optixAccelBuild(optixContext, cuStream, &accelOptions,

buildInputs, 2, d_tempUpdate,

bufferSizes.tempUpdateSizeInBytes, d_output,

bufferSizes.outputSizeInBytes, &outputHandle, nullptr, 0);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 29

5 Acceleration structures 5.7 Relocation

Updating an acceleration structure usually requires a different amount of temporary memory

than the original build.

When updating an existing acceleration structure, only the device pointers and/or their

buffer content may be changed. You cannot change the number of build inputs, the build

input types, build flags, traversable handles for instances (for an instance-AS), or the number

of vertices, indices, AABBs, instances, SBT records or motion keys. Changes to any of these

things may result in undefined behavior, including GPU faults.

Note, however, that in the following two cases it is more efficient to re-build the geometry-AS

and/or the instance-AS, or to use the respective masking and flags:

• When using indices, changing the connectivity or, in general, using shuffled vertex

positions will work, but the quality of the acceleration structure will likely degrade

substantially.

• During an animation operation, geometry that should be invisible to the camera should

not be “removed” from the scene, either by moving it very far away or by converting it

into a degenerate form. Such changes to the geometry will also degrade the acceleration

structure.

Setting the acceleration structure flag OPTIX_BUILD_FLAG_ALLOW_UPDATE may also degrade

the performance of the acceleration structure when processing curve primitives.

Updating an acceleration structure requires that any other acceleration structure that is using

this acceleration structure as a child directly or indirectly also needs to be updated or rebuild.

5.7 Relocation

Geometry acceleration structures can be copied and moved, however they may not be used

until optixAccelRelocate has been called to update the copied acceleration structure and

generate the new traversable handle. Any acceleration structure may be relocated, including

compacted acceleration structures.

The copy does not need to be on the original device. This enables the copying of acceleration

structure data to compatible devices without rebuilding the acceleration structure.

To relocate an acceleration structure, an OptixRelocationInfo object is filled using

optixAccelGetRelocationInfo and the traversable handle of the source acceleration

structure. This object can then be used to determine if relocation to a device (as specified with

an OptixDeviceContext) is possible. This is done using

optixCheckRelocationCompatibility. If the target device is compatible, the source

acceleration structure may be copied to that device with a subsequent call of

optixAccelRelocate.

The traversables referenced by an IAS and the OMMs referenced by a triangle GAS may

themselves require relocation. The arguments relocateInputs and numRelocateInputs to

optixAccelRelocate should be used to specify the relocated traversables and OMMs. After

relocation, the relocated acceleration structure will reference these relocated traversables and

OMMs instead of their sources. The number of relocate inputs numRelocateInputs must

match the number of build inputs numBuildInputs used to build the source acceleration

structure. Relocate inputs correspond with build inputs used to build the source acceleration

30 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.7 Relocation 5 Acceleration structures

structure and should appear in the same order (see optixAccelBuild). relocateInputs and

numRelocateInputs may be zero, preserving any references to traversables and OMMs from

the source acceleration structure. An OptixRelocateInputInstanceArray specifies a device

buffer OptixRelocateInputInstanceArray::traversableHandles of handles to relocated

traversables, one per instance. OptixRelocateInputInstanceArray::traversableHandles

may be zero, preserving any references to traversables and OMMs from the source input.

Note that the geometric bounds of the acceleration structure are not updated, so

OptixRelocateInputInstanceArray::traversableHandles should correspond to

relocated source traversables. An OptixRelocateInputTriangleArray may specify a

relocated OMM OptixRelocateInputTriangleArray::opacityMicromap.

OptixRelocateInputTriangleArray::opacityMicromap may be zero, preserving any

references to the OMM from the source input.

OptixRelocateInputTriangleArray::numSbtRecords must equal the corresponding value

OptixBuildInputTriangleArray::numSbtRecords.

The following example relocates the geometry and instance acceleration structure to new

CUDA allocations on the same device:

Listing 5.10

OptixRelocationInfo gasInfo = {};

optixAccelGetRelocationInfo(context, gasHandle, &gasInfo);

int compatible = 0;

optixCheckRelocationCompatibility(

context, &gasInfo, &compatible);

if(compatible != 1) {

fprintf(stderr,

"Device isn’t compatible for relocation "

"of geometry acceleration structures.");

exit(2);

}

This is unnecessary
because the copy
operation’s source
and destination are
on the same
device, but is here
to illustrate the
API.

CUdeviceptr d_relocatedGas = 0;

cudaMalloc((void**)&d_relocatedGas,

gasBufferSizes.outputSizeInBytes);

cudaMemcpy((void*)d_relocatedGas,

(void*)d_gasOutputBuffer,

gasBufferSizes.outputSizeInBytes,

cudaMemcpyDeviceToDevice);

Copy and relocate the geometry
acceleration structure

OptixTraversableHandle relocatedGasHandle = 0;

optixAccelRelocate(

context, 0,

&gasInfo,

0, 0,

d_relocatedGas,

gasBufferSizes.outputSizeInBytes,

&relocatedGasHandle);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 31

5 Acceleration structures 5.8 Compacting acceleration structures

CUdeviceptr d_relocatedIas = 0;

cudaMalloc((void**)&d_relocatedIas,

iasBufferSizes.outputSizeInBytes);

cudaMemcpy((void*)d_relocatedIas,

(void*)d_iasOutputBuffer,

iasBufferSizes.outputSizeInBytes,

cudaMemcpyDeviceToDevice);

Copy and relocate the instance
acceleration structure

OptixRelocationInfo iasInfo = {};

optixAccelGetRelocationInfo(

context, iasHandle, &iasInfo);

OptixTraversableHandle relocatedIasHandle = 0;

std::vector<OptixTraversableHandle>

instanceHandles(g_instances.size());

CUdeviceptr d_instanceTravHandles = 0;

cudaMalloc(

(void**)&d_instanceTravHandles,

sizeof(OptixTraversableHandle) * instanceHandles.size());

for(unsigned int i = 0; i < g_instances.size(); ++i)

instanceHandles[i] = relocatedGasHandle;

cudaMemcpy((void*)d_instanceTravHandles, instanceHandles.data(),

sizeof(OptixTraversableHandle) * instanceHandles.size(),

cudaMemcpyHostToDevice);

OptixRelocateInput relocateInput = {};

relocateInput.type = OPTIX_BUILD_INPUT_TYPE_INSTANCES;

relocateInput.instanceArray.numInstances = instanceHandles.size();

relocateInput.instanceArray.traversableHandles = d_instanceTravHandles;

optixAccelRelocate(

context, 0,

&iasInfo,

&relocateInput, 1,

d_relocatedIas,

iasBufferSizes.outputSizeInBytes,

&relocatedIasHandle);

5.8 Compacting acceleration structures

A post-process can compact an acceleration structure after construction. This process can

significantly reduce memory usage, but it requires an additional pass. The build and compact

operations are best performed in batches to ensure that device synchronization does not

degrade performance. The compacted size depends on the acceleration structure type and its

properties and on the device architecture.

32 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.8 Compacting acceleration structures 5 Acceleration structures

To compact the acceleration structure as a post-process, do the following:

1. Build flag OPTIX_BUILD_FLAG_ALLOW_COMPACTION must be set in the

OptixAccelBuildOptions as passed to optixAccelBuild.

2. The emit property OPTIX_PROPERTY_TYPE_COMPACTED_SIZE must be set in the

OptixAccelEmitDesc as passed to optixAccelBuild. This property is generated on the

device and it must be copied back to the host if it is required for allocating the new

output buffer. The application may then choose to compact the acceleration structure

using optixAccelCompact.

3. The optixAccelCompact call should be guarded by an

if(compactedSize < outputSize) (or similar) to avoid the compacting pass in cases

where it is not beneficial. Note that this check requires a copy of the compacted size (as

queried by optixAccelBuild) from the device memory to host memory.

Just like an uncompacted acceleration structure, it is possible to traverse, update, or relocate a

compacted acceleration structure.

For example:

Listing 5.11

size_t *d_compactedSize;

OptixAccelEmitDesc property = {};

property.type = OPTIX_PROPERTY_TYPE_COMPACTED_SIZE;

property.result = d_compactedSize;

OptixTraversableHandle accelHandle = 0;

OptixTraversableHandle compactedAccelHandle = 0;

accelOptions.buildFlags = OPTIX_BUILD_FLAG_ALLOW_COMPACTION;

optixAccelBuild(optixContext, cuStream, &accelOptions,

buildInputs, 2, d_tempUpdate, bufferSizes.tempSizeInBytes,

d_output, bufferSizes.outputSizeInBytes, &accelHandle,

&property, 1);

size_t compactedSize;

cudaMemcpy(&compactedSize, d_compactedSize,

sizeof(size_t),

cudaMemcpyDeviceToHost);

void *d_compactedOutputBuffer;

cudaMalloc(&d_compactedOutputBuffer, compactedSize);

if(compactedSize < bufferSizes.outputSizeInBytes) {

optixAccelCompact(

optixContext, cuStream,

accelHandle,

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 33

5 Acceleration structures 5.9 Traversable objects

d_compactedOutputBuffer, compactedSize,

&compactedAccelHandle);

}

A compacted acceleration structure does not reference the uncompacted input data. The

application is free to reuse the memory of the uncompacted acceleration structure without

invalidating the compacted acceleration structure. However, the memory for the compacted

acceleration structure must not overlap memory of the uncompacted acceleration structure as

the compaction operation does not work in-place.

A compacted acceleration structure supports dynamic updates only if the uncompacted

source acceleration structure was built with the OPTIX_BUILD_FLAG_ALLOW_UPDATE build

flag. (See “Dynamic updates” (page 29).) The amount of temporary memory required for a

dynamic update is the same for the uncompacted acceleration structure and compacted

acceleration structure. Note that using the following build flags will lead to less memory

savings when enabling the compacting post-process:

• OPTIX_BUILD_FLAG_ALLOW_UPDATE

• OPTIX_BUILD_FLAG_PREFER_FAST_BUILD

5.9 Traversable objects

The instances in an instance-AS may reference transform traversables, as well as

geometry-ASs. Transform traversables are fully managed by the application. The application

needs to create these traversables manually in device memory in a specific form. The function

optixConvertPointerToTraversableHandle converts a raw pointer into a traversable

handle of the specified type. The traversable handle can then be used to link traversables

together.

In device memory, all traversable objects need to be 64-byte aligned. Note that moving a

traversable to another location in memory invalidates the traversable handle. The application

is responsible for constructing a new traversable handle and updating any other traversables

referencing the invalidated traversable handle.

The traversable handle is considered opaque and the application should not rely on any

particular mapping of a pointer to the traversable handle.

For example:

Listing 5.12

OptixMatrixMotionTransform transform = {};

... Setup motion transform

cudaMemcpy(d_transform, &transform,

sizeof(OptixMatrixMotionTransform),

cudaMemcpyHostToDevice);

34 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.10 Motion blur 5 Acceleration structures

OptixTraversableHandle transformHandle = 0;

optixConvertPointerToTraversableHandle(

optixContext, d_transform,

OPTIX_TRAVERSABLE_TYPE_MATRIX_MOTION_TRANSFORM,

&transformHandle);

OptixInstance instance = {};

instance.traversableHandle = transformHandle;

... Setup instance description

5.9.1 Traversal of a single geometry acceleration structure

The traversable handle passed to optixTrace can be a traversable handle created from a

geometry-AS. This can be useful for scenes where single geometry-AS objects represent the

root of the scene graph.

If the modules and pipeline only need to support single geometry-AS traversables, it is

beneficial to change the OptixPipelineCompileOptions::traversableGraphFlags from

OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_ANY to

OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_GAS.

This signals to NVIDIA OptiX that no other traversable types require support during

traversal.

5.10 Motion blur

Motion support in OptiX targets the rendering of images with motion blur using a stochastic

sampling of time. OptiX supports two types of motion as part of the scene: transform motion

and vertex motion, often called deformation motion. When setting up the scene traversal

graph and building the acceleration structures, motion options can be specified per

acceleration structure as well as per motion transform traversable. At run time, a time

parameter is passed to the trace call to perform the intersection of a ray against the scene at

the selected point in time.

The general design of the motion feature in OptiX tries to strike a balance between providing

many parameters to offer a high degree of freedom combined with a simple mapping of scene

descriptions to these parameters but also delivering high traversal performance at the same

time. As such OptiX supports the following key features:

• Vertex and transformation motion

• Matrix as well as SRT (scale rotation translation) transformations

• Arbitrary time ranges (ranges not limited to [0,1]) and flags to specify behavior outside

the time range

• Arbitrary concatenations of transformations (for example, a matrix transformation on

top of a SRT transformation)

• Per-ray timestamps

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 35

5 Acceleration structures 5.10 Motion blur

Scene descriptions with motion need to map easily to traversable objects and their motion

options as offered by OptiX. As such, the idea is that the motion options are directly derived

by the scene description, delivering high traversal performance without the need for any

performance-driven adjustments. However, due to the complexity of the subject, there are a

few exceptions that are discussed in this section.

This section details the usage of the motion options on the different traversable types and

how to map scene options best to avoid potential performance pitfalls.

5.10.1 Basics

Motion is supported by OptixMatrixMotionTransform, OptixSRTMotionTransform and

acceleration structure traversables. The general motion characteristics are specified per

traversable as motion options: the number of motion keys, flags, and the beginning and

ending motion times corresponding to the first and last key. The remaining motion keys are

evenly spaced between the beginning and ending times. The motion keys are the data at

specific points in time and the data is interpolated in between neighboring keys. The motion

options are specified in the OptixMotionOptions struct.

The motion options are always specified per traversable (acceleration structure or motion

transform). There is no dependency between the motion options of traversables; given an

instance referencing a geometry acceleration structure with motion, it is not required to build

an instance acceleration structure with motion. The same goes for motion transforms. Even if

an instance references a motion transform as child traversable, the instance acceleration

structure itself may or may not have motion.

Motion transforms must specify at least two motion keys with the motion beginning time

strictly smaller than the ending time. Acceleration structures, however, also accept

OptixAccelBuildOptions with field OptixMotionOptions set to zero. This effectively

disables motion for the acceleration structure and ignores the motion beginning and ending

times, along with the motion flags.

OptiX also supports static transform traversables in addition to the static transform of an

instance. Static transforms are intended for the case of motion transforms in the scene.

Without any motion transforms (OptixMatrixMotionTransform or

OptixSRTMotionTransform) in the traversable graph, any static transformation should be

baked into the instance transform. However, if there is a motion transform, it may be required

to apply a static transformation on a traversable (for example, on a geometry-AS) first before

applying the motion transform. For example, a motion transform may be specified in world

coordinates, but the geometry it applies to needs to be placed into the scene first

(object-to-world transformation, which is usually done using the instance transform). In this

case, a static transform pointing at the geometry acceleration structure can be used for the

object-to-world transformation and the instance transform pointing to the motion transform

has an identity matrix as transformation.

Motion boundary conditions are specified by using flags. By default, the behavior for any

time outside the time range, is as if time was clamped to the range, meaning it appears static

and visible. Alternatively, to remove the traversable before the beginning time, set

OPTIX_MOTION_FLAG_START_VANISH; to remove it after the ending time, set

OPTIX_MOTION_FLAG_END_VANISH.

36 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.10 Motion blur 5 Acceleration structures

For example:

Listing 5.13

OptixMotionOptions motionOptions = {};

motionOptions.numKeys = 3;

motionOptions.timeBegin = -1f;

motionOptions.timeEnd = 1.5f;

motionOptions.flags = OPTIX_MOTION_FLAG_NONE;

OptiX offers two types of motion transforms, SRTs (scale-rotation-translation) as well as 3x4

affine matrices, each specifying one transform (SRT or matrix) per motion key. The

transformations are always specified as object-to-world transformation just like the instance

transformation. During traversal OptiX performs a per-component linear interpolation of the

two nearest keys. The rotation component (expressed as a quaternion) of the SRT is an

exception, OptiX ensures that the interpolated quaternion of two SRTs is of unit length by

using nlerp interpolation for performance reasons. This results in a smooth, scale-preserving

rotation in Cartesian space though with non-constant velocity.

For vertex motion, OptiX applies a linear interpolation between the vertex data that are

provided by the application. If intersection programs are used and AABBs are supplied for

the custom primitives, the AABBs are also linearly interpolated for intersection. The AABBs

at the motion keys must therefore be big enough to contain any motion path of the

underlying custom primitive.

There are several device-side functions that take a time parameter such as optixTrace and

respect the motion options as set at the traversables. The result of these device-side functions

is always that of the specified point in time, e.g., the intersection of the ray with the scene at

the selected point in time. Device-side functions are discussed in detail in “Device-side

functions” (page 117).

5.10.2 Motion geometry acceleration structure

Use optixAccelBuild to build a motion acceleration structure. The motion options are part

of the build options (OptixAccelBuildOptions) and apply to all build inputs. Build inputs

must specify primitive vertex buffers (for OptixBuildInputTriangleArray,

OptixBuildInputCurveArray, and OptixBuildInputSphereArray), radius buffers (for

OptixBuildInputCurveArray and OptixBuildInputSphereArray), and AABB buffers (for

OptixBuildInputCustomPrimitiveArray and OptixBuildInputInstanceArray) for all

motion keys. These are interpolated during traversal to obtain the continuous motion vertices

and AABBs between the begin and end time.

For example:

Listing 5.14

CUdeviceptr d_motionVertexBuffers[3];

OptixBuildInputTriangleArray buildInput = {};

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 37

5 Acceleration structures 5.10 Motion blur

buildInput.vertexBuffers = d_motionVertexBuffers;

buildInput.numVertices = numVertices;

The motion options are typically defined by the mesh data which should directly map to the

motion options on the geometry acceleration structure. For example, if a triangle mesh has

three per-vertex motion values, the geometry acceleration structure needs to have three

motion keys. Just as for non-motion meshes, it is possible to combine meshes within a single

geometry acceleration structure to potentially increase traversal performance (this is generally

recommended if there is only a single instance of each mesh and the meshes overlap or are

close together). However, these meshes need to share the same motion options (as they are

specified per geometry acceleration structure). The usual trade-offs apply in case meshes need

to be updated from one frame to another as in an interactive application. The entire geometry

acceleration structure needs to be rebuilt or refitted if the vertices of at least one mesh change.

It is possible to use a custom intersection program to decouple the actual vertex data and the

motion options of the geometry acceleration structure. Intersection programs allow any kind

of intersection routine. For example, it is possible to implement a three-motion-key-triangle

intersection, but build a static geometry acceleration structure over AABBs by passing AABBs

to the geometry acceleration structure build that enclose the full motion path of the triangles.

However, this is generally not recommended for two reasons: First, the AABBs tend to

increase in size very quickly even with very little motion. Second, it prevents the use of

hardware intersection routines. Both of these effects can have a tremendous impact on

performance.

5.10.3 Motion instance acceleration structure

Just as for a geometry acceleration structure, the motion options for an instance acceleration

structure are specified as part of the build options. The notable difference to a geometry

acceleration structure is that the motion options for an instance acceleration structure almost

only impact performance. Hence, whether or not to build a motion instance acceleration

structure has no impact on the correctness of the rendering (determining which instances can

be intersected), but impacts memory usage as well as traversal performance. The only

exception to that are the vanish flags as these force any instance of the instance acceleration

structure to be non-intersectable for any ray time outside of the time range of the instance

acceleration structure.

In the following, guidelines are provided on setting the motion options to achieve good

performance and avoid pitfalls. We will focus on the number of motion keys, usually the

main discriminator for traversal performance and the only factor for memory usage. The

optimal number of motion keys used for the instance acceleration structure build depends on

the amount and linearity of the motion of the traversables referenced by the instances. The

time beginning and ending range are usually defined by what is required to render the

current frame. The recommendations given here may change in the future.

The following advice should be considered a simplified heuristic. A more detailed derivation

of whether or not to use motion is given below. For RTCores version 1.0 (Turing architecture),

do not use motion for instance acceleration structure, but instead build a static instance

acceleration structure that can leverage hardware-accelerated traversal. For any other device

(devices without RTCores or RTCores version >= 2.0), build a motion instance acceleration

38 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.10 Motion blur 5 Acceleration structures

structure if any of the instances references a motion transform or a motion acceleration

structure as traversable child.

If a motion instance acceleration structure is built, it is often sufficient to use a low number of

motion keys (two or three) to avoid high memory costs. Also, it is not required to use a large

number of motion keys just because one of the referenced motion transforms has many

motion keys (such as the maximum motion keys of any referenced traversable by any of the

instances). The motion options have no dependency between traversable objects and a high

number of motion keys on the instance acceleration structure causes a high memory

overhead. Clearly, motion should not be used for an instance acceleration structure if the

instances only reference static traversables.

Further considerations when using motion blur:

Is motion enabled?

An instance acceleration structure should be built with motion on (the number of motion

keys larger than one) if the overall amount of motion of the instanced traversables is

non-minimal. For a single instance this can be quantified by the amount of change of its

AABB over time. Hence, in case of a simple translation (for example, due to a matrix

motion transform), the metric is the amount of the translation in comparison to the size

of the AABB. In case of a scaling, it is the ratio of the size of the AABB at different points

in times. If sufficiently many instanced traversables exhibit a non-minimal amount of

change of their AABB over time, build a motion instance acceleration structure.

Inversely, a static instance acceleration structure can yield higher traversal performance if

many instanced traversables have no motion at all or only very little. The latter can

happen for rotations. A rotation around the center of an object causes a rather small

difference in the AABB of the object. However, if the rotational pivot point is not the

center, it is likely to cause a big difference in the AABB of the object.

As it is typically hard to actually quantify the amount of motion for the instances, switch

to motion if sufficiently many instanced traversables have or are expected to have

motion. Yet it is difficult to predict when exactly it pays off to use or not use motion on

the instance acceleration structure.

If motion is enabled, how many keys should be defined?

A reasonable metric to determine the required number of motion keys for an instance

acceleration structure is the linearity of the motion of the instanced traversables. If there

are motion transforms with many motion keys, rotations, or a hierarchical set of motion

transforms, more motion keys on the instance acceleration structure may increase

traversal performance. Transformations like a simple translation, rotation around the

center of an object, a small scale, or even all of those together are usually handles well by

a two-motion-key instance acceleration structure.

Finally, the quality of the instance acceleration structure is also affected by the number of

motion keys of the referenced traversables of the instances. As such, it is desirable to

have the motion options of the instance acceleration structure match the motion options

of any referenced motion transform. For example, if all instances reference motion

transforms with three keys, it is reasonable to also use three motion keys for the instance

acceleration structure. Note that also in this case the statement from above still applies

that using more motion keys only helps if the underlying transformation results in a

non-linear motion.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 39

5 Acceleration structures 5.10 Motion blur

5.10.4 Motion matrix transform

The motion matrix transform traversable (OptixMatrixMotionTransform) transforms the ray

during traversal using a motion matrix. The traversable provides a 3x4 row-major

object-to-world transformation matrix for each motion key. The final motion matrix is

constructed during traversal by interpolating the elements of the matrices at the nearest

motion keys.

The OptixMatrixMotionTransform struct has a dynamic size, dependent on the number of

motion keys. The struct specifies the header and the first two motion keys for convenience;

when using more than than two keys, compute the size required for additional keys.

For example:

Listing 5.15

#define NUM_MOTION_KEYS 3

float matrixKeys[NUM_MOTION_KEYS][12];
...

size_t transformSizeInBytes = sizeof(OptixMatrixMotionTransform)

+ (NUM_MOTION_KEYS-2) * 12 * sizeof(float);

OptixMatrixMotionTransform *transform =

(OptixMatrixMotionTransform*) malloc(transformSizeInBytes);

transform->motionOptions.numKeys = NUM_MOTION_KEYS;

transform->motionOptions.timeBegin = -1f;

transform->motionOptions.timeEnd = 1.5f;

transform->motionOptions.flags = 0;

memcpy(transform->transform, matrixKeys,

NUM_MOTION_KEYS * 12 * sizeof(float));

5.10.5 Motion scale/rotate/translate transform

The behavior of the motion transform OptixSRTMotionTransform is similar to the matrix

motion transform OptixMatrixMotionTransform. In OptixSRTMotionTransform the

object-to-world transforms per motion key are specified as a scale, rotation and translation

(SRT) decomposition instead of a single 3x4 matrix. Each motion key is a struct of type

OptixSRTData, which consists of 16 floats:

Listing 5.16

typedef struct OptixSRTData {

float sx, a, b, pvx, sy, c, pvy, sz, pvz, qx, qy, qz, qw, tx, ty, tz;

} OptixSRTData;

These 16 floats define the three components for scaling, rotation and translation whose

product is the motion transformation:

• The scaling matrix S

40 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.10 Motion blur 5 Acceleration structures

S =

sx a b pvx

0 sy c pvy

0 0 sz pvz

0 0 0 1

defines an affine transformation that can include scale, shear, and a translation. The

translation enables a pivot point to be defined for the scale, shear as well as the

subsequent rotation.

• The quaternion R

R =
[

qx qy qz qw
]

describes a rotation with angular component qw = cos(θ/2) and other components qx, qy

and qz, where

[

qx qy qz
]

= sin(θ/2) ∗
[

ax ay az
]

and where the axis
[

ax ay az
]

is normalized.

• The translation T

T =

1 0 0 tx

0 1 0 ty

0 0 1 tz

defines another translation that is applied after the rotation. Typically, this translation

includes the inverse translation from the matrix S to undo the pivot point

transformation.

To obtain the effective transformation at time t, the elements of the components of S, R, and T

are interpolated linearly and R is normalized afterwards. The components are then

multiplied to obtain the combined transformation C = T × R × S. The transformation C is the

effective object-to-world transformations at time t, and C−1 is the effective world-to-object

transformation at time t.

Example 1 – Rotation about the origin

Use two motion keys. Set the first key to identity values. For the second key, define a

quaternion from an axis and angle, for example, a 60-degree rotation about the z axis is

given by:

Q =
[

0 0 sin(π/6) cos(π/6)
]

Example 2 – Rotation about a pivot point

Use two motion keys. Set the first key to identity values. Represent the pivot point as a

translation P, and define the second key as follows:

S′ = P−1 × S

T′ = T × P

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 41

5 Acceleration structures 5.10 Motion blur

C = T′ × R × S′

Example 3 – Scaling about a pivot point

Use two motion keys. Set the first key to identity values. Represent the pivot as a

translation G =
[

Gx Gy f Gz

]

and modify the pivot point described above:

P′
x = Px + (−Sx ∗ Gx + Gx)

P′
y = Py + (−Sy ∗ Gy + Gy)

P′
z = Pz + (−Sz ∗ Gz + Gz)

5.10.6 Transforms trade-o�s

Several trade-offs must be considered when using transforms.

SRTs compared to matrix motion transforms

Use SRTs for any transformations containing a rotation. Only SRTs produce a smooth

rotation without distortion. They also avoid any oversampling of matrix transforms to

approximate a rotation. However, note that the maximum angle of rotation due to two

neighboring SRT keys needs to be less than 180 degrees, hence, the dot product of the

quaternions needs to be positive. This way the rotations are interpolated using the

shortest path. If a rotation of 180 degrees or more is required, additional keys need to be

specified such that the rotation between two keys is less than 180 degrees. OptiX uses

nlerp to interpolate quaternion at runtime. While nlerp produces the best traversal

performance, it causes non-constant velocity in the rotation. The variation of rotational

velocity is directly dependent on the amount of the rotation. If near constant rotation

velocity is required, more SRT keys can be used.

Due to the complexity of the rotation, instance acceleration structure builds with

instances that reference SRT transforms can be relatively slow. For real-time or

interactive applications, it can be advantageous to use matrix transforms to have fast

rebuilds or refits of the instance acceleration structure.

Motion options for motion transforms

The motion options for motion transforms should be derived by the scene setup and

used as needed. The number of keys is defined by the number of transformations

specified by the scene description. The beginning, ending times should be as needed for

the frame or tighter if specified by the scene description.

Avoid duplicating instances of motion transforms to achieve a motion behavior that can

also be expressed by a single motion transform but many motion keys. An example is the

handling of irregular keys, which is discussed in the following section.

Dealing with irregular keys

OptiX only supports regular time intervals in its motion options. Irregular keys should be

resampled to fit regular keys, potentially with a much higher number of keys if needed.

A practical example for this is a motion matrix transform that performs a rotation. Since

the matrix elements are linearly interpolated between keys, the rotation is not an actual

rotation, but a scale/shear/translation. To avoid visual artifacts, the rotation needs to be

sampled with potentially many matrix motion keys. Such a sampling bounds the

42 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.11 Opacity micromaps 5 Acceleration structures

maximum error in the approximation of the rotation by the linear interpolation of

matrices. The sampling should not try to minimize the number of motion keys by

outputting irregular motion keys, but rather oversample the rotation with many keys.

Duplicate motion transforms should not be used as a workaround for irregular keys,

where each key has varying motion beginning and ending times and vanish motion flags

set. This duplication creates traversal overhead as all copies need to be intersected and

their motion times compared to the ray’s time.

5.11 Opacity micromaps

Very high quality, high-definition opacity (alpha) content is usually very coherent, or locally

similar. Typically, there are larger regions that are completely transparent or opaque within

meshes that do not necessarily coincide with triangle boundaries. Consequently, any-hit

programs are often invoked for ray-triangle hits that could be trivially categorized as either a

miss or a hit. To reduce the overhead of redundant and potentially expensive any-hit

programs, OptiX opacity micromaps (OMMs) can be used to cull any-hit program invocations

in regions within a triangle known to be completely opaque or transparent.

The OMM is defined on a sub-triangle detail level, encoded in a uniformly subdivided mesh

of 4N microtriangles, laid out on a 2N × 2N barycentric grid. Figure 5.1 shows the first few

levels of the subdivision scheme.

0Subdivision Level: 1 2 3

Micro-Triangle Count: 1 4 16 64

Fig. 5.1 - Microtriangle subdivision

The OMM specifies one of four opacity states per microtriangle: opaque, transparent,

unknown-opaque or unknown-transparent. An OMM is applied to one or more base

triangles in a GAS to add extra opacity detail, much like traditional texture mapping.

Figure 5.2 shows examples of OMM detail applied to a base triangle.

Fig. 5.2 - Opacity micromap detail on base triangle

5.11.1 Opacity micromap arrays

Unlike triangles, the OMMs are not stored directly in the geometry acceleration structures

(GAS), but instead reside in a separate resource, an opacity micromap array. Individual OMMs

may be referenced by triangles from within a GAS. Because OMM storage is separate from

the GASes, they can be reused within and across multiple GASes in a scene. Like acceleration

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 43

5 Acceleration structures 5.11 Opacity micromaps

structures, OMM arrays are created on the device using the functions

optixOpacityMicromapArrayComputeMemoryUsage and

optixOpacityMicromapArrayBuild.

Listing 5.17

OptixMicromapBufferSizes bufferSizes = {};

optixOpacityMicromapArrayComputeMemoryUsage(

optixContext, &buildInput, &bufferSizes);

void* d_micromapArray;

void* d_tmp;

cudaMalloc(&d_micromapArray, bufferSizes.outputSizeInBytes);

cudaMalloc(&d_tmp, bufferSizes.tempSizeInBytes);

OptixMicromapBuffers buffers = {};

buffers.output = d_micromapArray;

buffers.outputSizeInBytes = bufferSizes.outputSizeInBytes;

buffers.temp = d_tmp;

buffers.tempSizeInBytes = bufferSizes.tempSizeInBytes;

OptixResult results = optixOpacityMicromapArrayBuild(

optixContext, cuStream, &buildInput, &buffers);

The functions use a single OptixOpacityMicromapArrayBuildInput struct specifying the set

of OMMs in the array. The build input specifies a device buffer of raw OMM data and a

device buffer with per OMM OptixOpacityMicromapDesc structs. The descriptors specify

the format and size of each OMM and its location within the raw OMM data buffer. The input

also specifies a host buffer of OptixOpacityMicromapHistogramEntry structs. This specifies

a histogram over opacity micromaps in the build input, binned by input format and

subdivision level combinations. Counts of histogram bins with equal format and subdivision

combinations are added together. The descriptors in the input buffer don’t need to appear in

any particular order, as long as the counts match the input histogram.

Listing 5.18

OptixOpacityMicromapHistogramEntry histogram[2]; Create micromap histogram

histogram[0].count = 2;

histogram[0].subdivisionLevel = 9;

histogram[0].format =

OPTIX_OPACITY_MICROMAP_FORMAT_2_STATE;

Two 1-bit OMMs of level 9

44 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.11 Opacity micromaps 5 Acceleration structures

histogram[1].count = 1;

histogram[1].subdivisionLevel = 8;

histogram[1].format =

OPTIX_OPACITY_MICROMAP_FORMAT_4_STATE;

One 2-bit OMM of level 8

OptixOpacityMicromapDesc hostPerMicromapDescBuffer[2] = {...};

unsigned micromapUsageCounts = histogram[0].count + histogram[1].count;

size_t perMicromapDescBufferSizeInBytes =

micromapUsageCounts * sizeof(OptixOpacityMicromapDesc);

size_t inputBufferSizeInBytes =

histogram[0].count *

(1 << (max(3,2 * histogram[0].subdivisionLevel) - 3)) +

histogram[1].count *

(1 << (max(2,2 * histogram[1].subdivisionLevel) - 2));

All
OMMs
are
byte
alinged

std::vector<OptixOpacityMicromapDesc> h_perMicromapDescBuffer(

micromapUsageCounts);

std::vector<char> h_inputBuffer(inputBufferSizeInBytes);

... Setup OMM descriptors and input data.

void* d_perMicromapDescBuffer;

void* d_inputBuffer;

cudaMalloc(d_perMicromapDescBuffer, perMicromapDescBufferSizeInBytes);

cudaMalloc(d_inputBuffer, inputBufferSizeInBytes);

cudaMemcpy(

d_perMicromapDescBuffer, h_perMicromapDescBuffer.data(),

perMicromapDescBufferSizeInBytes, cudaMemcpyHostToDevice);

cudaMemcpy(

d_inputBuffer, h_inputBuffer.data(),

inputBufferSizeInBytes, cudaMemcpyHostToDevice);

OptixOpacityMicromapArrayBuildInput buildInput = {};

buildInput.flags = OPTIX_OPACITY_MICROMAP_FLAG_NONE;

buildInput.inputBuffer = d_inputBuffer;

buildInput.perMicromapDescBuffer = d_perMicromapDescBuffer;

buildInput.numMicromapHistogramEntries = 2;

buildInput.micromapHistogramEntries = histogram;

The OMM arrays are opaque data structures, but the application is responsible for memory

management. The amount of memory required for a OMM array can be queried by passing

the build input to optixOpacityMicromapArrayComputeMemoryUsage.

The OMM array constructed by optixOpacityMicromapArrayBuild does not reference any

of the device buffers referenced in the build input. All relevant data is copied from these

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 45

5 Acceleration structures 5.11 Opacity micromaps

buffers into the OMM array output buffer, possibly in a different format. The application is

free to release the input memory after the build without invalidating the OMM array.

Figure 5.3 shows an example of a collection of OMMs in an OMM array.

0Index: 1 2 3 4

Fig. 5.3 - Collection of opacity micromaps on a base triangle

Like acceleration structures, OMM arrays can be copied freely in memory, but the

optixOpacityMicromapArrayRelocate function must be called with the target location

address before the relocated OMM array is used in any bounding volume hierarchy (BVH).

(See “Relocation” (page 30).)

5.11.2 Usage

5.11.2.1 Construction of the geometry acceleration structure

The application can attach one OMM array per triangle geometry input to the GAS build.

Figure 5.4 shows the relationship between OMM arrays and the acceleration structure

hierarchy.

structure
acceleration
Geometry

Build inputBuild input

structure
acceleration
Geometry

Build inputBuild input

structure
acceleration
Geometry

Build inputBuild input

Opacity

micromap array

structure
acceleration

Instance
Instance Instance Instance Instance

Opacity

micromap array

Opacity

micromap array

Opacity

micromap array

Fig. 5.4 - Opacity micromap arrays and the acceleration structure hierarchy

The OMM array is specified using the OptixBuildInputOpacityMicromap struct. OMM can

be indexed using an index buffer in device memory, with one OMM index per triangle.

Instead of an actual index, predefined indices (with names in the form

OPTIX_OPACITY_MICROMAP_PREDEFINED_INDEX_*) can be used to indicate that there is no OM

for this triangle, but the triangle has a uniform opacity state, and the selected behavior is

applied to the entire triangle.

46 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.11 Opacity micromaps 5 Acceleration structures

The input also specifies a host buffer of OptixOpacityMicromapUsageCount structs. This

specifies the usage counts over opacity micromaps in the acceleration structure build input,

binned by input format and subdivision level combinations. Counts of bins with equal format

and subdivision combinations are added together. Duplicate use of OMMs in the GAS build

input must be included in this count, while OMMs that occur in the OMM array but are not

referenced by the GAS build input are not to be included in these counts. Note that this buffer

differs from the histogram passed to the OMM array build, which only specifies the

occurences of OMMs in the OMM array, irrespective of use by GAS build inputs.

Listing 5.19

OptixBuildInputOpacityMicromap opacityMicromap = {};

int h_indexBuffer[] = {

1, OPTIX_OPACITY_MICROMAP_PREDEFINED_INDEX_FULLY_OPAQUE 0, ...

};

cudaMemcpy(

d_indexBuffer, h_indexBuffer, sizeof(h_indexBuffer),

cudaMemcpyHostToDevice);

OptixOpacityMicromapUsageCount count[2] = { ... };
Create micromap
histogram

opacityMicromap.indexingMode =

OPTIX_OPACITY_MICROMAP_ARRAY_INDEXING_MODE_INDEXED;

opacityMicromap.indexBuffer = d_indexBuffer;

opacityMicromap.opacityMicromapArray = d_micromapArray;

opacityMicromap.indexSizeInBytes = 4;

opacityMicromap.numMicromapUsageCounts = 2;

opacityMicromap.micromapUsageCounts = count;

OptixBuildInputTriangleArray triangleInput = {};
...

triangleInput.opacityMicromap = opacityMicromap;

If a GAS has been built with the OPTIX_BUILD_FLAG_ALLOW_OPACITY_MICROMAP_UPDATE

build flag, it is possible to assign a different OMM array and OMM indices when updating a

GAS. GAS builds using OMM arrays as input will continue to refer to these OMM Arrays. If

an OMM array is overwritten with new OMM data, any GASes referencing it become stale

and must be updated.

5.11.2.2 Traversal

To render any triangles with OMMs, OMMs must be enabled in the pipeline using

allowOpacityMicromaps in the OptixPipelineCompileOptions struct. If OMMs are known

not to be used, it is more efficient to not specify the flag. If the flag is omitted and an OMM is

encountered during ray traversal, behavior is undefined.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 47

5 Acceleration structures 5.11 Opacity micromaps

Listing 5.20

OptixPipelineCompileOptions options = {};
...

options.allowOpacityMicromaps = true;

When a ray intersects a triangle with an OMM attached, the intersection point within the

barycentric space of the triangle is used to look up the opacity at that location through the

OMM. OMMs classify microtriangles as opaque, transparent, or unknown.

Opaque The hit is treated as a hit against a geometry with the

OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT flag set.

Transparent The hit is ignored and traversal resumes.

Unknown The hit is treated as a hit against a geometry without the

OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT flag set.

The two microtriangles states unknown-opaque and unknown-transparent are both treated as

unknown. However, using the OPTIX_RAY_FLAG_FORCE_OPACITY_MICROMAP_2_STATE ray

flag or OPTIX_INSTANCE_FLAG_FORCE_OPACITY_MICROMAP_2_STATE instance flag they can be

forced to be opaque and transparent, respectively. This redefinition affords some flexibility of

interpretation: in some ray-traced effects, exact resolution is not required and eliminating all

any-hit program invocation is visually acceptable. For example, soft shadows may be

resolved using a lower resolution proxy. The OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT flag is

ignored for triangles which have OMMs attached, as OMMs give much more fine-grained

control and are intended to replace the geometry-wide state where possible.

Ray flags and instance flags may still alter the state of opaque hits, but note that any such

flags are only applied after the OMM hit classification has occurred. This means that once the

OMM has been evaluated, there is no way to turn a transparent microtriangle miss into a hit

even by using the OPTIX_RAY_FLAG_DISABLE_ANYHIT ray flag or

OPTIX_INSTANCE_FLAG_DISABLE_ANYHIT instance flag.

It is still possible to turn off OMMs and revert to the geometry-specified behavior for

individual instances using the OPTIX_INSTANCE_FLAG_DISABLE_OPACITY_MICROMAPS

instance flag. This flag is only valid if the referenced BLAS was originally built with the

OPTIX_BUILD_FLAG_ALLOW_DISABLE_OPACITY_MICROMAPS build flag. Disabling OMMs on a

per-instance basis may be useful to implement certain level-of-detail schemes.

5.11.3 Encoding

OMM are bit masks of one or two bits per microtriangle.

A 1-bit OMM encodes each microtriangle as either transparent

(OPTIX_OPACITY_MICROMAP_STATE_TRANSPARENT) or opaque

(OPTIX_OPACITY_MICROMAP_STATE_OPAQUE) and never requires any-hit program invocation

during the tracing of a ray.

A 2-bit OMM is used if there are portions of the opacity that need to be resolved in an any-hit

program. The 2-bit OMM encodes each microtriangles as either transparent, opaque,

48 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

unknown-transparent (OPTIX_OPACITY_MICROMAP_STATE_UNKNOWN_TRANSPARENT) or

unknown-opaque (OPTIX_OPACITY_MICROMAP_STATE_UNKNOWN_OPAQUE).

The OMM microtriangle states are organized along a space-filling curve in barycentric space,

as illustrated in Figure 5.5.

Fig. 5.5 - Order of microtriangle states in a base triangle

The mapping of microtriangle into base triangle barycentric space is implemented by the

helper function optixMicromapIndexToBaseBarycentrics, made available by including the

header file optix_micromap.h.

5.12 Displaced micro-meshes

As scenes increasingly add more geometric complexity, moving into the range of billions or

even trillions of triangles, the storage requirements (as well as geometry acceleration

structure build times) grow substantially. To achieve the goal of dramatically increased

geometric quality at sub-par storage costs, OptiX provides the builtin displaced micro-mesh

triangle primitive.

Very high-definition geometric content is typically coherent, which the new primitive exploits

for compactness. Displacement micro-maps, or DMMs, add high frequency geometric detail

to base triangles, resulting in a displaced micro-mesh. Individual DMMs only store

information about how to modulate a base triangle to add the extra detail, much like

traditional texture mapping.

The primitive was introduced with the NVIDIA Ada Lovelace generation GPUs (RtCores

version 3.0) with native hardware support. OptiX also provides software support on all

previous RTX-enabled GPUs (with RtCores version 1.0 and 2.0).

5.12.1 Displaced micro-meshes

Displaced micro-meshes are constructed by applying a scalar displacement field to a regular

triangle with displacement directions at its vertices. The initial displacement positions on the

triangle are defined by a uniform 2N x 2N subdivision of the barycentric grid on the triangle.

A uniform tessellation is applied, leading to 4N micro-triangles. The application specifies the

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 49

5 Acceleration structures 5.12 Displaced micro-meshes

subdivision level N and hereby the amount of added micro-triangles. OptiX supports

subdivision levels from 0 to 5, resulting in up to 1024 micro-triangles.

Subdivision level

1 (4 micro triangles) 2 (16 micro triangles) 3 (64 micro triangles)

Fig. 5.6 - Subdivision scheme levels

The positions of the vertices of the micro-triangles are computed as follows. Each displaced

micro-triangle vertex, or micro-vertex, has an associated scalar displacement amount in range

[0,1] which is used to displace the micro-vertex from a base triangle along a displacement

direction. The displacement direction is computed by a barycentric (linear) interpolation of

three input displacement directions. The input displacement directions are defined by the

application for the three vertices of the base triangle. The length of the displacement

directions specifies the maximum amount of possible displacement. The scalar displacement

values used to compute a displaced micro-mesh from a base triangle are stored compactly

together in a displacement micro-map (DMM).

Fig. 5.7 - Micro-map displacement detail being applied on a triangle

50 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

OptiX provides an additional optional mechanism to define the base triangle that is similar to

the “pretransform” mechanics of geometry acceleration structure builds. Instead of using the

application-provided input vertices directly, it is possible to displace these along the

displacement directions by a application-defined bias to define the base triangle. As such an

input triangle consisting of three vertex positions is supplied by the application to the

geometry acceleration structure build operation, along with input displacement directions,

scales, and biases per vertex. These inputs are combined to create a base triangle and

displacement directions that together define the possible range of displacements. An example

can be viewed in Figure 5.8. More concisely, the base triangle vertex positions and

displacement directions are computed using the following equations:

BasePosition = InputPosition + InputDisplacementDirection × Bias

DisplacementDirection = FloatToHalf(InputDisplacementDirection × Scale)

On the left in Figure 5.8, a base triangle and scaled displacement directions constructed from

the geometry acceleration structure inputs. On the right is a displaced micro-mesh. The green

and blue triangles are constructed from the biased base triangle vertices and scaled

displacement directions and define the minimum and maximum bounds for the possible

displacements.

Input triangle

Bias

Scale
Input displacement

direction

Base triangle Displacement

direction

Base triangle

Max. displacement

Fig. 5.8 - Base vertices and scaled displacement directions

Although the position bias and displacement direction scale are optional, they add some

additional control over the displacement range. The biased input vertices (the base vertices)

and the scaled displacement directions together define a bounding prismoid containing the

possible displacements, with the minimum and maximum displacements each forming a

triangle cap.

The base triangle positions and (scaled) displacement directions are linearly interpolated for

each micro-vertex according to the barycentric position of the micro-vertex. The final

micro-triangle vertex position is then computed by moving from the interpolated base

position along the interpolated displacement direction by the amount specified by the

corresponding micro-vertex entry in the attached DMM. This process can be summarized

with the following equations:

µVtxBasePosition = Lerp(BasePositions, µVtxBarycentrics)
µVtxDisplacementVector = Lerp(DisplacementVectors, µVtxBarycentrics)

µVtxDisplacementPosition = µVtxBasePosition + µVtxDisplacementVector × µVtxDisplacementAmount

A note on precision and performance: while all operations are performed in 32 bit precision,

the (scaled) displacement vectors are intermediately stored in half (16 bit) floating point

precision in the AS. The displacement amounts are represented using 11 bit unorm values for

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 51

5 Acceleration structures 5.12 Displaced micro-meshes

compactness, allowing for 2048 possible displacements uniformly distributed between the

minimum and maximum triangle caps along the interpolated displacement direction. For

performance reasons, it is recommended to keep the bounding prismoid as tight as possible

around the displaced micro-triangles. This also helps ensuring that the 11 bit displacement

range is well utilized. Bias and scale can be used as tools to tighten the prismoid. However, it

is the applications responsibility to ensure that neighboring displaced micro-mesh triangle

primitive use that same bias and scale to ensure bit-exactness at the edge, which is required

for watertighness.

5.12.2 Displacement micro-maps

Displacement micro-maps (DMMs) contain the scalar displacement values of micro-vertices

compactly independent of the base triangle. The concept is very similar to opacity

micro-maps, normal maps, or any other textures. A displacement micro-map is the aggregate

of the storage of scalar displacement values, a subdivision level and the encoding format of

the displacement values.

Displacement amounts are stored in displacement blocks, each covering a triangular region of

micro-triangles. This triangular region is called sub-triangle and corresponds to exactly one

displacement block. Depending on the subdivision level and encoding format, one or more

displacement blocks (sub-triangles resp.) are required to store all displacement values for a

given displacement micro-map. OptiX offers three different displacement block encodings,

covering 64, 256, and 1024 micro-triangles per sub-triangle respectively. The different

encodings allow for a trade off between displacement precision and storage requirements. A

DMM can only use one of these encodings across all of its sub-triangles, hereby defining the

data layout of the displacement blocks. The maximum subdivision level for a displacement

micro-map is 5 (1024 micro-triangles). The full set of possible subdivision levels and block

encodings can be viewed in Figure 5.9 (page 53). While neighboring sub-triangles share an

edge by construction, the corresponding displacement blocks do not share displacement

values at the edge. Instead, both displacement blocks need to specify the same displacement

values for the micro-vertices at the edge.

The sub-triangles are organized along a space-filling curve to cover all micro-triangles of the

DMM as shown in Figure 5.9 (page 53). The curve defines the relative placement of the

sub-triangles within the barycentric grid and also the expected order of the displacement

blocks in memory. The space-filling curve is hierarchical and can in theory be applied to any

subdivision level. As such the curve also orders the micro-triangles within a sub-triangle as

well as globally within the DMM (Figure 5.10 (page 53)). Note that this is the same

space-filling curve as used by opacity micro-maps.

52 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

Subdivision level

5

(1024 micro triangles)

4

(256 micro triangles)

3

(64 micro triangles)

2

(16 micro triangles)

1

(4 micro triangles)

0

(1 micro triangle)

B
lo

c
k
 f

o
rm

a
t

1
0

2
4

 m
ic

ro
 t

ri
a

n
g

le
s

1
2

8
 b

y
te

s

/
b

lo
c
k

2
5

6
 m

ic
ro

 t
ri
a

n
g

le
s

1
2

8
 b

y
te

s

/
b

lo
c
k

6
4

 m
ic

ro
 t

ri
a

n
g

le
s

6
4

 b
y
te

s

/
b

lo
c
k

Fig. 5.9 - The available set of possible displacement block configurations in a DMM

As shown in Figure 5.9 (page 52), depending on the block encoding and subdivision level,

multiple blocks may be needed to cover the total micro-triangle count of the DMM. The order

of the blocks in these cases follows a space-filling curve as indicated by the gray paths.

Fig. 5.10 - The space filling curve covering 16, 64, or 256 micro-triangles (corresponding to subdivision levels 2-4). The
space filling curve index is the integer distance along the curve.

To maintain that the hierarchical ordering is contiguous, some sub-triangles are flipped and

wound differently. Sub-triangle A in Figure 5.11 is constructed with the v0, v01, and v20

corner vertices. The middle triangle, M, then starts at v20, goes to v12, and then v01. M is

flipped vertically, and C is flipped horizontally, meaning that the winding is flipped for both

of these triangles, as can be seen in Figure 5.11.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 53

5 Acceleration structures 5.12 Displaced micro-meshes

v0
v01

v1

v12

v2

v20

A

M

B

C

v0
v01

v1

v12

v2

v20

A

M

B

C

Fig. 5.11 - Left: Sub-triangle ordering at each step of hierarchical splitting. At each
split, enter at A, then go to M (middle) and B, and finally exit at C. Right: Vertex

ordering of each hierarchically split sub-triangle.

Flipping the winding direction needs to be taken into account when setting the displacement

values of a displacement block. The first displacement value of the displacement block

corresponding to sub-triangle A is at v0, while the first displacement value of the

displacement block corresponding to sub-triangle M is at v20, and the first displacement

value of the displacement block corresponding to sub-triangle C is at v12. Figure 5.12 shows

the orientation of all sub-triangles for the three possible counts (1, 4, or 16) of sub-triangles of

a DMM.

Number of sub triangles

1 4 16

Fig. 5.12 - Illustration of how sub-triangles flip horizontally and vertically at different levels. Green arrows
indicate that the winding is unchanged or only flipped vertically for the hierarchy level above, while blue arrows

indicate a flip in horizontal winding. The dotted line traces out the space filling curve order in which the
corresponding displacement blocks are encoded.

5.12.2.1 Displacements blocks

The order of the displacement values locally within a block (the order of the micro-vertices)

follows a hierarchical splitting scheme based on the space-filling curve. The first three values

correspond to the vertices of the sub-triangle this block is applied to (subdivision level 0 wrt.

the sub-triangle). The following three values correspond to the vertices when splitting the

edges of the sub-triangle (subdivision level 1 wrt. the sub-triangle). In particular, each

subdivision level adds a new vertex on every edge connecting two vertices of the prior

subdivision level, splitting each triangle into four, as seen in Figure 5.13 (page 55):

54 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

0 1

2

v

wu

A

0 1

2

5

43

0 1

2

5

43

Subdivide upright triangle A.

1. split edge u

2. split edge w

3. split edge v

Fig. 5.13 - Splitting the edges of a triangle to create new vertices. A triangle is split into four new smaller
triangles

For every subdivision level, the order of the new vertices is derived from the following rules.

The hierarchical subdivision is executed by splitting only the upright (not vertically flipped

triangles) triangles. For a given upright triangle, first edge u, then w, and finally v is split to

introduce new vertices as shown in Figure 5.13.

Next, the splitting is continued by looping over the triangles following the space-filling curve,

introducing new vertices as shown above for all upright triangles. Once all triangles are split

for a given subdivision level, the process is repeated for the next subdivision level as shown

in Figure 5.14.

0

3

2

4

5 1

A

B

C

D

0

3

6 7

8

2

4

5 1

B

C

D

0

3

6 9 10

11

7

8

2

4

5 1

D

0

3

12 13

14

6 9 10

11

7

8

2

4

5 1

0

3

12 13

14

6 9 10

11

7

8

2

4

5 1

A

B H J

C I K

D

E G

F L

O

N

M

P

0 17

15 16

xx xx xx

xx xx xx xx

xx xx xx

xx xx

xx

xx xx xx xx xx xx

xx xx xx xx

xx xx

xx xx

3

12 13

14

6 9 10

11

7

8

2

4

5 1 0 17

15 16

20 29 32

18 19 27 28

23 26 35

41 38

44

21 22 24 25 33 34

39 40 36 37

42 43

30 31

3

12 13

14

6 9 10

11

7

8

2

4

5 1

Subdivide upright triangles A, C, D by splitting the edges of each triangle in a fixed order.

Subdivide upright

triangles

A, C, D,

F,

I, K, L,

M, O, P.

Fig. 5.14 - Applying the splitting to each upright triangle in the space-filling-curve order hierarchically orders the
displacement values in a displacement block.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 55

5 Acceleration structures 5.12 Displaced micro-meshes

5.12.2.1.1 Uncompressed displacement block format

The simplest of the block formats covers 64 micro-triangles (subdivision level 3). The 45 x 11

bits displacement values are stored bit packed in the order following in the vertex indexing

scheme above. The storage requirement for these values is 495b. Another two bits are

reserved for future use (at the very end of the block). The total size of the block is padded up

to 512b (= 64B), as shown in the table below:

64 tris, 64 B block

Field Entries Bits per entry Bit offset

Displacement amounts Vertex 0–44 45 11 0

Unused 1 15 495

Reserved Must be 0 1 2 510

Layout of the uncompressed 64 micro-triangle, 64 byte block

5.12.2.1.2 Compressed displacement block formats

With the 256 and 1024 micro-triangle block formats (corresponding to subdivision levels 4

and 5, respectively) it is possible to achieve higher compression rates than the 64

micro-triangle format. Both the 256 and 1024 micro-triangle formats occupy 128B, which offer

a 2x and 8x compression ratio respectively over the uncompressed 64 micro-triangle format.

While the 64 micro-triangle format can represent any combination of 11b displacement

amounts, the 256 and 1024 micro-triangle formats cannot, and instead rely on locally similar

displacements to extract compression. These compression formats thus allow encoders to

trade compression rate for geometric accuracy.

The compression scheme relies on the natural recursive subdivision used to form a

micro-map, with each subdivision level introducing more and more vertices while using

fewer and fewer correction bits. At the coarsest subdivision level, three 11 bit anchor points

are specified for the starting vertices. At each level of subdivision, new vertices are formed by

averaging the two adjacent vertices in the lower level. This is the prediction step: treat the

unorm values as integers and predict the value as the rounded average of the two adjacent

values A and B:

Prediction = (A + B + 1) / 2

The next step corrects that prediction by adjusting it up or down to the correct location:

Decoded = Prediction + (SignExtend(Correction) « Shift[Level][EdgeOrInterior])

This process is illustrated in Figure 5.15:

Fig. 5.15 - Displacement block compression: prediction and correction scheme

56 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

On the left in Figure 5.15 (page 56), three anchor points at subdivision level 0. In the middle,

three new vertices (green) are introduced at subdivision level 1. The displacement amounts

are predicted by averaging the two neighbors, after which correction is applied. On the right

at subdivision level 2, nine new vertices are introduced to be predicted and corrected.

If the correction movements are small, or allowed to be stored lossy, the number of bits used

to correct the prediction can be smaller than the number of bits needed to directly encode it.

The bit width of the correction factors are variable per level. The base anchor points are

unsigned (11b unorm) while the corrections are signed (two’s complement). A shift value

allows for corrections to be stored at less than the full bit width. Shift values are stored per

level with 4 variants to allow vertices on each of the edges to be shifted independently from

each other and from internal micro-vertices, as seen in Figure 5.16. This allows to pick shift

values at the edges such that neighboring sub-triangles and DMMs can be matched at the

edge to ensure watertighness. Note that the decoded position does wrap when adding the

correction to the prediction. It is up to the encoder to either avoid wrapping based on stored

values or to make the wrapping outcome senseful.

v0 v1

v2

Fig. 5.16 - Different shift amounts can be assigned to each of the three edges and the interior of the displacement
block.

In Figure 5.16, the separate shifts allow for better control in matching edges with neighboring

sub-triangles. Also note that the shift values don’t apply to the anchor points as they are

always stored uncompressed in the displacement block.

The two compressed block formats both follow the same prediction and correction scheme,

and only differ in the bit allocations for the various fields. An overview of the format layout

can be found in the table below:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 57

5 Acceleration structures 5.12 Displaced micro-meshes

1024 tris,
128 B block

256 tris,
128 B block

Field Entries Bits per entry Bit offset Bits per entry Bit offset

Anchors Vertex 0 1 11 0 11 0

Vertex 1 1 11 11 11 11

Vertex 2 1 11 22 11 22

Corrections Level 1 corrections 3 11 33 11 33

Level 2 corrections 9 8 66 11 66

Level 3 corrections 30 4 138 10 165

Level 4 corrections 108 2 258 5 465

Level 5 corrections 408 1 474

Unused 1 88 882 1 1005

Shifts Level 5 shifts 4 4 970

Level 4 shifts 4 4 986 3 1006

Level 3 shifts 4 3 1002 1 1018

Level 2 shifts 4 2 1014

Reserved Must be 0 1 2 1022 2 1022

Bit distributions and layout of displacement block compression formats

5.12.2.2 Edge decimation

Adjacent triangles with different DMMs applied may differ in which subdivision levels are

used. This allows the amount of displacement detail to vary smoothly over the mesh. The

difference in subdivision level between two neighboring base triangles is limited to one level,

however. The change in levels though can propagate throughout the mesh such that, for

example, that level 3 base triangle is next to a level 4 base triangle which itself is next to a

level 5 base triangle.

When adjacent base triangles have different subdivision levels, the number of segments on

the shared edge differs by a factor of 2. This introduces T-junctions which introduce cracking,

as illustrated in the left image in Figure 5.17 (page 59). In order to maintain watertightness

across varying resolutions, a stitching pattern is used along the edge of the higher resolution

triangles, as shown to the right in Figure 5.17 (page 59).

It is the applications responsibility to ensure that there are no cracks within and between

neighboring displaced micro-mesh triangles. An edge of a displaced micro-mesh triangle can

be flagged to require edge decimation to match the topology of its neighboring displaced

micro-mesh triangle.

58 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

Fig. 5.17 - Edge decimation prevents cracking between displaced micro-mesh triangles with different subdivision
levels

In Figure 5.17, the left side shows two neighboring triangles with different subdivision level.

If this is not handled, there are cracks along the shared edges. On the right, the vertices at the

T-junctions are omitted, and the connectivity is changed using stitching pattern along the

edge.

5.12.3 Displaced micro-mesh API

The host API for displaced micro-meshes consists of two main parts: First, the interface for

specifying DMMs and constructing DMM arrays. Second, the specification of the displaced

micro-mesh triangle primitive build input to geometry acceleration structure as well as

referencing DMMs for the desired displacement.

5.12.3.1 Displacement micro-map arrays

0

DMM array index

1 2 3 4

Fig. 5.18 - Multiple DMMs are stored together in a DMM array. A specific DMM can be referenced by its index
in the DMM array.

Scalar displacement values are specified compactly in the form of DMMs, which are not

stored directly in the geometry acceleration structure, but in a separate resource, a

displacement micro-map array, see Figure 5.18. The DMM array can be referenced when

building a geometry acceleration structure and individual DMMs may then be referenced by

triangles from within a geometry acceleration structure as shown in Figure 5.19 (page 60).

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 59

5 Acceleration structures 5.12 Displaced micro-meshes

Because DMM storage is separate from the geometry acceleration structures, DMMs can be

reused within and across multiple geometry acceleration structures in a scene. Similar to

acceleration structures, DMM arrays are created on the device using the functions

optixDisplacementMicromapArrayComputeMemoryUsage and

optixDisplacementMicromapArrayBuild.

structure

acceleration

Geometry
Build inputBuild input

structure

acceleration

Geometry
Build inputBuild input

structure

acceleration

Geometry
Build inputBuild input

Displacement

micromap

array

Displacement

micromap

array

Displacement

micromap

array

Displacement

micromap

array

structure

acceleration

Instance

Instance Instance Instance Instance

Fig. 5.19 - DMM arrays are a separate resource that need to be built. DMM arrays can be re-used by multiple
geometry acceleration structures.

Listing 5.21

OptixMicromapBufferSizes bufferSizes = {};

optixDisplacementMicromapArrayComputeMemoryUsage(

optixContext, &dmmArrayBuildInput, &bufferSizes);

void* d_displacementMicromapArray;

void* d_tmp;

cudaMalloc(&d_displacementMicromapArray, bufferSizes.outputSizeInBytes);

cudaMalloc(&d_tmp, bufferSizes.tempSizeInBytes);

OptixMicromapBuffers buffers = {};

buffers.output = d_displacementMicromapArray;

buffers.outputSizeInBytes = bufferSizes.outputSizeInBytes;

buffers.temp = d_tmp;

buffers.tempSizeInBytes = bufferSizes.tempSizeInBytes;

OptixResult results = optixDisplacementMicromapArrayBuild(

optixContext, cuStream, &buildInput, &buffers);

The functions use a single OptixDisplacementMicromapArrayBuildInput struct specifying

the set of DMMs in the array. The build input specifies a device buffer of displacement blocks,

with formats and data layouts as described in the previous section. DMM arrays are a

collection of DMMs that can have different subdivision levels and formats. Therefore, the

60 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

5.12 Displaced micro-meshes 5 Acceleration structures

build input also references a device buffer with per DMM OptixDisplacementMicromapDesc

structs. The descriptors specify the format and size of each DMM and its corresponding

displacement blocks as well as its location within the DMM displacement values buffer. If a

DMM requires multiple displacement blocks (for example, a subdivision level 5 DMM with

the 256 micro-triangles / 128 bytes block format), it is expected that the displacement blocks

are consecutive in memory, in the order of the sub-triangles as detailed in the previous

section. The build input also specifies a host buffer of

OptixDisplacementMicromapHistogramEntry structs. This specifies a histogram over

displacement micro-maps in the build input, binned by input format and subdivision level

combinations. Counts of histogram bins with equal format and subdivision combinations are

added together. The descriptors in the input buffer don’t need to appear in any particular

order, as long as the counts match the input histogram. Similar to the AS builds, the DMM

array build offers a “fast trace” and “fast build” flag, each designed to favor trace

performance or build speed over the other. For non-interactive renderers it is generally

recommended to use “fast trace”. Also similar to AS builds, the device data doesn’t need to

be ready for consumption when calling

optixDisplacementMicromapArrayComputeMemoryUsage and only the histogram

information as well as flags for the DMM array build are consumed for the memory size

computation.

The DMM arrays are opaque data structures, but the application is responsible for memory

management. The amount of memory required for a OMM array can be queried by passing

the build input to optixDisplacementMicromapArrayComputeMemoryUsage.

The DMM array constructed by optixDisplacementMicromapArrayBuild does not reference

any of the device buffers referenced in the build input. All relevant data is copied from these

buffers into the DMM array output buffer, possibly in a different format. The application is

free to release the input memory after the build without invalidating the DMM array.

5.12.3.2 Geometry acceleration structure build for DMM triangles

Primitives of type displaced micro-mesh triangle use the same build input struct

(OptixBuildInputTriangleArray) as normal triangles. However, they provide the

additional displacement information (provided via the

OptixBuildInputDisplacementMicromap struct) to turn a normal triangle into a displaced

micro-mesh triangle. The DMMs in a DMM array only store the displacement amounts, all

other information is only specified as part of the geometry acceleration structure build input.

The application can attach one DMM array per triangle geometry input to the geometry

acceleration structure build. The DMM array is set via member

displacementMicromapArray. The indexing into the DMM array happens via an explicit

index buffer or an implicit one-to-one mapping by assuming the Nth triangle in the build

input uses the Nth DMM of the referenced DMM array. The displacement directions at the

vertices of the base triangles, the optional bias and scale, and additional flags (edge

decimation flags) are provided as buffers to the geometry acceleration structure build. The

displacement directions and optional bias and scale are per-vertex attributes and the

corresponding buffers are indexed just like the vertex position buffer. The flags buffer

contains per-triangle attributes and the Nth flag is applied to the Nth primitive in the build

input. Currently, the only available flags are the edge decimation flags, signaling the

intersector if edge decimation is supposed to be applied to an edge (see section edge

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 61

5 Acceleration structures 5.12 Displaced micro-meshes

decimation). OptiX does not apply edge decimation automatically, nor verifies if edge

decimation is required at an edge.

In case an index buffer is used for the DMM array indexing, a stride between the indices as

well as the byte size of a single index is set using displacementMicromapIndexStrideInBytes

and displacementMicromapIndexSizeInBytes. The index can also be offset by a constant

using member displacementMicromapIndexOffset. The displacement directions, as well as

bias and scale can be specified as float or half precision values. However, in case of the

displacement directions, the API accepts float values purely for convenience, the values are

converted to the half format internally and all operations are performed using half precision

(see previous section).

The input also specifies a host buffer of OptixDisplacementMicromapUsageCount structs.

This specifies the usage counts over displacement micro-maps in the acceleration structure

build input, binned by input format and subdivision level combinations. Counts of bins with

equal format and subdivision combinations are added together. Duplicate use of DMMs in

the geometry acceleration structure build input must be included in this count, while DMMs

that occur in the DMM array but are not referenced by the geometry acceleration structure

build input are not to be included in these counts. Note that this buffer differs from the

histogram passed to the DMM array build, which only specifies the occurrences of DMMs in

the DMM array, irrespective of use by geometry acceleration structure build inputs.

Note that neither the reference to the DMM array nor the indexing from triangles to DMMs

are allowed to change in a geometry acceleration structure update.

62 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6 Program pipeline creation

The following API functions are described in this section:

optixModuleCreate

optixModuleDestroy

optixProgramGroupCreate

optixProgramGroupGetStackSize

optixPipelineCreate

optixPipelineDestroy

optixPipelineSetStackSize

Programs are first compiled into modules of type OptixModule. One or more modules are

combined to create a program group of type OptixProgramGroup. Those program groups are

then linked into an OptixPipeline on the GPU. This is similar to the compile and link

process commonly found in software development. The program groups are also used to

initialize the header of the SBT record associated with those programs.

The three create methods, optixModuleCreate, optixProgramGroupCreate, and

optixPipelineCreate take an optional log string. This string is used to report information

about any compilation that may have occurred, such as compile errors or verbose information

about the compilation result. To detect truncated output, the size of the log message is

reported as an output parameter. It is not recommended that you call the function again to

get the full output because this could result in unnecessary and lengthy work, or different

output for cache hits. If an error occurred, the information that would be reported in the log

string is also reported by the device context log callback (when provided).

Both mechanisms are provided for these create functions to allow a convenient mechanism

for pulling out compilation errors from parallel creation operations without having to

determine which output from the logger corresponds to which API invocation.

Symbols in OptixModule objects may be unresolved and contain extern references to

variables and __device__ functions.

These symbols can be resolved during pipeline creation using the symbols defined in the

pipeline modules. Duplicate symbols will trigger an error.

A pipeline contains all programs that are required for a particular ray-tracing launch. An

application may use a different pipeline for each launch, or may combine multiple

ray-generation programs into a single pipeline.

Most NVIDIA OptiX API functions do not own any significant GPU state; Streaming

Assembly (SASS) instructions, which define the executable binary programs in a pipeline, are

an exception. The OptixPipeline owns the CUDA resource associated with the compiled

SASS and it is held until the pipeline is destroyed. This allocation is proportional to the

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 63

6 Program pipeline creation 6.1 Program input

amount of compiled code in the pipeline, typically tens of kilobytes to a few megabytes.

However, it is possible to create complex pipelines that require substantially more memory,

especially if large static initializers are used. Wherever possible, exercise caution in the

number and size of the pipelines.

Module lifetimes need to extend to the lifetimes of program groups that reference them. After

using modules to create an OptixPipeline through the OptixProgramGroup objects,

modules may be destroyed with optixModuleDestroy.

6.1 Program input

NVIDIA OptiX programs are encoded by the compiler into either OptiX-IR, a proprietary

intermediate representation, or into PTX,1 an instruction set designed for parallel thread

execution. OptiX-IR contains a richer representation of the code that enables symbolic

debugging and provides opportunities for enhanced optimizations and future features.

OptiX-IR is a binary format that can only be read by NVIDIA tools, unlike PTX, which is

stored in plain-text format.

To create PTX programs, compile CUDA source files using the NVIDIA nvcc offline

compiler2 or nvrtc JIT compiler.3 To create OptiX-IR programs, compile the CUDA source

files with nvcc. OptiX device headers should be included in the source files to provide the

device API for OptiX programs.

Transitioning from PTX to OptiX-IR input is recommended when using nvcc to generate code

for OptiX. PTX will continue to be supported but may not provide all OptiX-IR features, such

as symbolic debugging.

The following example uses nvcc to create an OptiX-IR program:

nvcc -optix-ir -Ipath-to-optix-sdk/include --use_fast_math myprogram.cu \

-o myprogram.optixir

The nvcc command-line options are explained in more detail as part of the usage description

of the compiler options displayed with nvcc --help.

Note the following requirements for nvcc and nvrtc compilation:

• The streaming multiprocessor (SM) target of the input OptiX program must be less than

or equal to the SM version of the GPU for which the module is compiled.

• To generate code for the minimum supported GPU (Maxwell), use architecture targets

for SM 5.0, for example, --gpu-architecture=compute_50. Because OptiX rewrites the

code internally, those targets will work on any newer GPU as well.

• CUDA Toolkits 10.2 and newer throw deprecation warnings for SM 5.0 targets. These

can be suppressed with the compiler option -Wno-deprecated-gpu-targets.

1. https://docs.nvidia.com/cuda/parallel-thread-execution/

2. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

3. https://docs.nvidia.com/cuda/nvrtc/

64 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/nvrtc/

6.2 Programming model 6 Program pipeline creation

If support for Maxwell GPUs is not required, you can use the next higher GPU

architecture target SM 6.0 (Pascal) to suppress these warnings.

• Use --machine=64 (-m64). Only 64-bit code is supported in OptiX.

• Define the output type with --optix-ir or --ptx. Do not compile to obj or cubin.

• For debugging, use the debug flag -G. Symbolic debugging is currently only supported

for OptiX-IR and not PTX, though PTX compiled with debug support can be used as

input to OptiX. It may also be necessary to set the environment variable

OPTIX_FORCE_DEPRECATED_LAUNCHER to 1. If breakpoints are unable to be hit, try setting

this environment variable before starting your application.

• Enable --relocatable-device-code=true (-rdc). Command nvcc can also use the

option --keep-device-functions, which is not supported by nvrtc. These flags

prevent the CUDA compiler from eliminating direct or continuation callables as dead

code.

• To get smaller and faster code, enable --use_fast_math. This flag enables .approx

instructions for trigonometric functions and reciprocals, avoiding inadvertent use of

slow double-precision floats. For performance reasons, it is recommended that you set

this flag; the only exception is use cases that require more precision.

• To profile your code with Nsight Compute,4 enable --generate-line-info and set

debugLevel = OPTIX_COMPILE_DEBUG_LEVEL_MODERATE in the

OptixModuleCompileOptions in your application host code.

6.2 Programming model

The NVIDIA OptiX programming model supports the multiple instruction, multiple data

(MIMD) subset of CUDA. Execution must be independent of other threads. For this reason,

shared memory usage and warp-wide or block-wide synchronization — such as barriers —

are not allowed in the input PTX code. All other GPU instructions are allowed, including

math, texture, atomic operations, control flow, and loading data to memory. Special

warp-wide instructions like vote and ballot are allowed, but can yield unexpected results as

the locality of threads is not guaranteed and neighboring threads can change during

execution, unlike in the full CUDA programming model. Still, warp-wide instructions can be

used safely when the algorithm in question is independent of locality by, for example,

implementing warp-aggregated atomic adds. The special registers in PTX - defined in the

PTX IR5 - are interpreted in OptiX as follows:

PTX Special Register Interpretation in OptiX

%tid launch index

%ntid launch dimension

%ctaid always equals to 0

%nctaid always equals to 1

%laneid unchanged, but volatile across trace calls

4. https://developer.nvidia.com/nsight-compute

5. http://cuda-internal/docs/cuda/gpgpu/current/parallel-thread-execution/index.html#special-registers

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 65

https://developer.nvidia.com/nsight-compute
http://cuda-internal/docs/cuda/gpgpu/current/parallel-thread-execution/index.html#special-registers

6 Program pipeline creation 6.2 Programming model

%warpid unchanged

%nwarpid unchanged

%smid unchanged

%nsmid unchanged

%gridid unchanged

%lanemask_eq, ... unchanged, but volatile across trace calls

%clock, ... unchanged

%pm0, ... invalid PTX error

%pm0_64, ... invalid PTX error

%envreg0, ... invalid PTX error

%globaltimer, ... unchanged

%reserved_smem_offset_begin, ... invalid PTX error

%total_smem_size invalid PTX error

%dynamic_smem_size invalid PTX error

While the first four registers can be accessed through CUDA intrinsics, namely threadIdx,

blockDim, blockIdx and gridDim respectively, all other special registers require the use of

PTX inline assembly. The usage of either CUDA intrinsics or PTX inline assembly applies to

both PTX or OptiX-IR input.

The memory model is consistent only within the execution of a single launch index, which

starts at the ray-generation invocation and only with subsequent programs reached from any

optixTrace or callable program. This includes writes to stack allocated variables. Writes

from other launch indices may not be available until after the launch is complete. If needed,

atomic operations may be used to share data between launch indices, as long as an ordering

between launch indices is not required. Memory fences are not supported.

The input PTX should include one or more NVIDIA OptiX programs. The type of program

affects how the program can be used during the execution of the pipeline. These program

types are specified by prefixing the program’s name with the following:

Program type Function name prefix

Ray generation __raygen__

Intersection __intersection__

Any hit __anyhit__

Closest hit __closesthit__

Miss __miss__

Direct callable __direct_callable__

Continuation callable __continuation_callable__

Exception __exception__

66 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.3 Module creation 6 Program pipeline creation

If a particular function needs to be used with more than one type, then multiple copies with

corresponding program prefixes should be generated.

In addition, each program may call a specific set of device-side intrinsics that implement the

actual ray-tracing-specific features. (See “Device-side functions” (page 117).)

6.3 Module creation

A module may include multiple programs of any program type. Two option structs control

the parameters of the compilation process:

OptixPipelineCompileOptions

Must be identical for all modules used to create program groups linked in a single

pipeline.

OptixModuleCompileOptions

May vary across the modules within the same pipeline.

These options control general compilation settings, for example, the level of optimization.

OptixPipelineCompileOptions controls features of the API such as the usage of custom

any-hit programs, curve primitives, sphere primitives, motion blur, exceptions, ray payload

and primitive attributes. For example:

Listing 6.1

OptixModuleCompileOptions moduleCompileOptions = {};

moduleCompileOptions.maxRegisterCount =

OPTIX_COMPILE_DEFAULT_MAX_REGISTER_COUNT;

moduleCompileOptions.optLevel =

OPTIX_COMPILE_OPTIMIZATION_DEFAULT;

moduleCompileOptions.debugLevel =

OPTIX_COMPILE_DEBUG_LEVEL_MINIMAL;

moduleCompileOptions.numPayloadTypes = 0;

moduleCompileOptions.payloadTypes = 0;

OptixPipelineCompileOptions pipelineCompileOptions = {};

pipelineCompileOptions.usesMotionBlur = false;

pipelineCompileOptions.traversableGraphFlags =

OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_LEVEL_INSTANCING;

pipelineCompileOptions.numPayloadValues = 2;

pipelineCompileOptions.numAttributeValues = 2;

pipelineCompileOptions.exceptionFlags = OPTIX_EXCEPTION_FLAG_NONE;

pipelineCompileOptions.pipelineLaunchParamsVariableName = "params";

pipelineCompileOptions.usesPrimitiveTypeFlags = 0;

OptixModule module = nullptr;

char* ptxData = ...;

size_t logStringSize = sizeof(logString);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 67

6 Program pipeline creation 6.4 Pipeline launch parameter

OptixResult res = optixModuleCreate(

optixContext,

&moduleCompileOptions,

&pipelineCompileOptions,

ptxData, ptx.size(),

logString, &logStringSize,

&module);

The numAttributeValues field of OptixPipelineCompileOptions defines the number of

32-bit words that are reserved to store the attributes. This corresponds to the attribute

definition in optixReportIntersection. See “Reporting intersections and attribute access”

(page 123).

The numPayloadValues field of OptixPipelineCompileOptions defines the number of 32-bit

words that are reserved to store the ray payload. Alternatively ray payload usage can be

specified in more detail using the numPayloadTypes and payloadTypes fields in

OptixModuleCompileOptions. See “Payload” (page 135).

Note: For best performance when your scene contains nothing but built-in triangles, set

OptixPipelineCompileOptions::usesPrimitiveTypeFlags to just

OPTIX_PRIMITIVE_TYPE_FLAGS_TRIANGLE.

6.4 Pipeline launch parameter

You specify launch-varying parameters or values that must be accessible from any module

through a user-defined variable named in OptixPipelineCompileOptions. In each module

that needs access, declare this variable with extern or extern "C" linkage and the

__constant__ memory specifier. The size of the variable must match across all modules in a

pipeline. Variables of equal size but differing types may trigger undefined behavior.

For example, the header file in Listing 6.2 defines the variable to shared, named params, as an

instance of the Params struct:

Listing 6.2 – Struct defined in header file params.h

struct Params

{

uchar4* image;

unsigned int image_width;

};

extern "C" __constant__ Params params;

Listing 6.3 shows that by including header file params.h, programs can access and set the

values of the shared params struct instance:

Listing 6.3 – Use of header file params.h in OptiX program

#include "params.h"

68 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.4 Pipeline launch parameter 6 Program pipeline creation

extern "C"

__global__ void draw_solid_color()

{
...

unsigned int image_index =

launch_index.y * params.image_width + launch_index.x];

params.image[image_index] = make_uchar4(255, 0, 0);

}

6.4.1 Parameter specialization

In some cases it could be beneficial to specialize modules in a pipeline to toggle specific

features on and off. For example, users may wish to compile support in their shaders for

calculating shadow rays, but may wish to disable this support if the scene parameters do not

require them. Users could support this with either multiple versions of the PTX program or

by reading a value from the pipeline launch parameters to indicate whether shadows are

supported. Multiple versions of the PTX program would allow for the best performance, but

come at the cost of maintaining and storing all those program versions. NVIDIA OptiX

provides a mechanism for specializing values in the pipeline launch parameters.

During compilation of the module, NVIDIA OptiX will attempt to find loads to the pipeline

launch parameter struct that are specified by

OptixPipelineCompileOptions::pipelineLaunchParamsVariableName within a given

range. These specified loads are then each replaced with a predefined value. Compiler

optimization passes use those constant values.

The struct OptixModuleCompileBoundValueEntry in Listing 6.4 can specify an array of bytes

that will replace a portion of the pipeline parameters:

Listing 6.4

struct OptixModuleCompileBoundValueEntry {

size_t pipelineParamOffsetInBytes;

size_t sizeInBytes;

const void* boundValuePtr;

const char* annotation; Optional string to display

};

Listing 6.5 shows how an array of OptixModuleCompileBoundValueEntry structs can be

specified in OptixModuleCompileOptions during module compilation:

Listing 6.5

struct OptixModuleCompileOptions {
...

const OptixModuleCompileBoundValueEntry* boundValues;

unsigned int numBoundValues;

};

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 69

6 Program pipeline creation 6.4 Pipeline launch parameter

Listing 6.6 (page 70) is an example of specializing a module to disable shadow rays:

Listing 6.6 – Device code that references the pipeline launch parameters to determine if shadows are enabled

struct LP {

bool useShadows;

};

extern "C" {

__constant__ LP params;

}

extern "C"

__global__ void __closesthit__ch()

{

float3 shadowColor = make_float3(1.f, 1.f, 1.f);

if(params.useShadows) {

shadowColor = traceShadowRay(...);

}
...

}

On the host side, Listing 6.7 shows the implementation of the launch parameters:

Listing 6.7 – Host code to specialize the pipeline launch parameters

LP launchParams = {};

launchParams.useShadows = false;

OptixModuleCompileBoundValueEntry useShadow = {};

useShadow.pipelineParamOffsetInBytes = offsetof(LP, useShadows);

useShadow.sizeInBytes = sizeof(LP::useShadows);

useShadow.boundValuePtr = &launchParams.useShadows;

OptixModuleCompileOptions moduleCompileOptions = {};

moduleCompileOptions.boundValues = &useShadow;

moduleCompileOptions.numBoundValues = 1;
...

optixModuleCreate(..., moduleCompileOptions, ...);

This pipeline launch parameter specialization makes the code of Listing 6.8 (page 71) possible:

70 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.4 Pipeline launch parameter 6 Program pipeline creation

Listing 6.8

extern "C"

__global__ void __closesthit__ch()

{

float3 shadowColor = make_float3(1.f, 1.f, 1.f);

if(false)

{

shadowColor = traceShadowRay(...);

}
...

}

Subsequent optimization would remove unreachable code, producing Listing 6.9:

Listing 6.9

extern "C"

__global__ void __closesthit__ch()

{

float3 shadowColor = make_float3(1.f, 1.f, 1.f);
...

}

The bound values are intended to represent a constant value in the pipelineParams.

NVIDIA OptiX will attempt to locate all loads from the pipelineParams and correlate them

to the appropriate bound value. However, there are cases where these loads and bound

values cannot be safely or reliably correlated. For example, correlation is not possible if the

pointer to the pipelineParams is passed as an argument to a non-inline function or if the

offset of the load to the pipelineParams cannot be statically determined due to access in a

loop. No module should rely on the value being specialized in order to work correctly. The

values in the pipelineParams specified on optixLaunch should match the bound value. If

validation mode is enabled on the context, NVIDIA OptiX will verify that the bound values

that are specified match the values in pipelineParams specified to optixLaunch.

If caching is enabled, changes in these values will result in newly compiled modules.

The pipelineParamOffsetInBytes and sizeInBytes must be within the bounds of the

pipelineParams variable or OPTIX_ERROR_INVALID_VALUE will be returned from

optixModuleCreate.

If more than one bound value overlaps or the size of a bound value is equal to 0, an

OPTIX_ERROR_INVALID_VALUE will be returned from optixModuleCreate.

The same set of bound values do not need to be used for all modules in a pipeline, but

overlapping values between modules must have the same value.

OPTIX_ERROR_INVALID_VALUE will be returned from optixPipelineCreate otherwise.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 71

6 Program pipeline creation 6.5 Program group creation

6.5 Program group creation

OptixProgramGroup objects are created from one to three OptixModule objects and are used

to fill the header of the SBT records. (See “Shader binding table” (page 79).) There are five

types of program groups.

OPTIX_PROGRAM_GROUP_KIND_RAYGEN

OPTIX_PROGRAM_GROUP_KIND_MISS

OPTIX_PROGRAM_GROUP_KIND_EXCEPTION

OPTIX_PROGRAM_GROUP_KIND_HITGROUP

OPTIX_PROGRAM_GROUP_KIND_CALLABLES

Modules can contain more than one program. The program in the module is designated by its

entry function name as part of the OptixProgramGroupDesc struct passed to

optixProgramGroupCreate. Four program groups can contain only a single program; only

OPTIX_PROGRAM_GROUP_KIND_HITGROUP can designate up to three programs for the

closest-hit, any-hit, and intersection programs.

Programs from modules can be used in any number of OptixProgramGroup objects. The

resulting program groups can be used to fill in any number of SBT records. Program groups

can also be used across pipelines as long as the compilation options match.

The lifetime of a module must extend to the lifetime of any OptixProgramGroup that

references that module.

A hit group specifies the intersection program used to test whether a ray intersects a

primitive, together with the hit shaders to be executed when a ray does intersect the

primitive. For built-in primitive types, a built-in intersection program should be obtained

from optixBuiltinISModuleGet() and used in the hit group. As a special case, the

intersection program is not required – and is ignored – for triangle and displaced micro-mesh

triangle primitives.

The following examples show how to construct a single hit-group program group:

Listing 6.10 – Construct hit-group for custom primitives

OptixModule shadingModule, intersectionModule;
... shadingModule and intersectionModule created here by optixModuleCreate

OptixProgramGroupDesc pgDesc = {};

pgDesc.kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;

pgDesc.hitgroup.moduleCH = shadingModule;

pgDesc.hitgroup.entryFunctionNameCH = "__closesthit__shadow";

pgDesc.hitgroup.moduleAH = shadingModule;

pgDesc.hitgroup.entryFunctionNameAH = "__anyhit__shadow";

pgDesc.hitgroup.moduleIS = intersectionModule;

pgDesc.hitgroup.entryFunctionNameIS = "__intersection__sphere";

OptixProgramGroupOptions pgOptions = {};

OptixProgramGroup sphereGroup = nullptr;

72 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.5 Program group creation 6 Program pipeline creation

optixProgramGroupCreate(

optixContext,

&pgDesc, programDescriptions

1, numProgramGroups

&pgOptions, programOptions

logString, sizeof(logString),

&sphereGroup); programGroup

Listing 6.11 – Construct hit-group for built-in curves primitives

OptixModule shadingModule, intersectionModule;
... shadingModule created here by optixModuleCreate

OptixBuiltinISOptions builtinISOptions = {};

builtinISOptions.builtinISModuleType =

OPTIX_PRIMITIVE_TYPE_ROUND_CUBIC_BSPLINE;

OptixResult res = optixBuiltinISModuleGet(

optixContext,

&moduleCompileOptions,

&pipelineCompileOptions,

&builtinISOptions,

&intersectionModule);

OptixProgramGroupDesc pgDesc= {};

pgDesc.kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;

pgDesc.hitgroup.moduleCH = shadingModule;

pgDesc.hitgroup.entryFunctionNameCH = "__closesthit__curves";

pgDesc.hitgroup.moduleAH = nullptr; Any-hit shader is optional

pgDesc.hitgroup.entryFunctionNameAH = nullptr;

pgDesc.hitgroup.moduleIS = intersectionModule;

pgDesc.hitgroup.entryFunctionNameIS = nullptr; No name for built-in IS

OptixProgramGroupOptions pgOptions = {};

OptixProgramGroup curvesGroup = nullptr;

optixProgramGroupCreate(

optixContext,

&pgDesc,

1,

&pgOptions,

logString, sizeof(logString),

&curvesGroup);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 73

6 Program pipeline creation 6.6 Pipeline linking

A hit-group construction for sphere primitives would be similar to the built-in curves

example, replacing the module type OPTIX_PRIMITIVE_TYPE_ROUND_CUBIC_BSPLINE by

OPTIX_PRIMITIVE_TYPE_SPHERE.

Multiple program groups of varying kinds can be constructed with a single call to

optixProgramGroupCreate. The following code demonstrates the construction of a

ray-generation and miss program group.

Listing 6.12

OptixModule rg, miss;
... Ray-generation and miss programs created here by optixModuleCreate

OptixProgramGroupDesc pgDesc[2] = {};

pgDesc[0].kind = OPTIX_PROGRAM_GROUP_KIND_MISS;

pgDesc[0].miss.module = miss1;

pgDesc[0].miss.entryFunctionName = "__miss__radiance";

pgDesc[1].kind = OPTIX_PROGRAM_GROUP_KIND_RAYGEN;

pgDesc[1].raygen.module = rg;

pgDesc[1].raygen.entryFunctionName = "__raygen__pinhole_camera";

OptixProgramGroupOptions pgOptions = {};

OptixProgramGroup raygenMiss[2];

optixProgramGroupCreate(

optixContext,

&pgDesc, programDescriptions

2, numProgramGroups

&pgOptions, programOptions

logString, sizeof(logString),

raygenMiss); programGroup

Options defined in OptixProgramGroupOptions may vary across program groups linked into

a single pipeline, similar to OptixModuleCompileOptions.

6.6 Pipeline linking

After all program groups of a pipeline are defined, they must be linked into an

OptixPipeline. The resulting OptixPipeline object is then used to invoke a ray-generation

launch.

When the OptixPipeline is linked, some fixed function components may be selected based

on OptixPipelineLinkOptions and OptixPipelineCompileOptions. These options were

previously used to compile the modules in the pipeline. The link options consist of the

maximum recursion depth setting for recursive ray tracing, along with pipeline level settings

for debugging. However, the value for the maximum recursion depth has an upper limit that

overrides an limit set by the link options. (See “Limits” (page 115).)

74 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.7 Pipeline stack size 6 Program pipeline creation

For example, the following code creates and links an OptixPipeline:

Listing 6.13

OptixPipeline pipeline = nullptr;

OptixProgramGroup programGroups[3] =

{ raygenMiss[0], raygenMiss[1], sphereGroup };

OptixPipelineLinkOptions pipelineLinkOptions = {};

pipelineLinkOptions.maxTraceDepth = 1;

optixPipelineCreate(

optixContext,

&pipelineCompileOptions,

&pipelineLinkOptions,

programGroups,

3,

logString, sizeof(logString),

&pipeline);

After calling optixPipelineCreate, the fully linked module is loaded into the driver.

NVIDIA OptiX uses a small amount of GPU memory per pipeline. This memory is released

when the pipeline or device context is destroyed.

6.7 Pipeline stack size

The programs in a module may consume two types of stack structure : a direct stack and a

continuation stack. The resulting stack needed for launching a pipeline depends on the

resulting call graph, so the pipeline must be configured with the appropriate stack size. These

sizes can be determined by the compiler for each program group. A pipeline may be reused

for different call graphs as long as the set of programs is the same. For this reason, the

pipeline stack size is configured separately from the pipeline compilation options.

The direct stack requirements resulting from ray-generation, miss, exception, closest-hit,

any-hit and intersection programs and the continuation stack requirements resulting from

exception programs are calculated internally and do not need to be configured. The direct

stack requirements resulting from direct-callable programs, as well as the continuation stack

requirements resulting from ray-generation, miss, closest-hit, any-hit, intersection, and

continuation-callable programs need to be configured. If these are not configured explicitly,

an internal default implementation is used. When the maximum depth of call trees of

continuation-callable programs is two or less, and no direct-callable programs or motion

transforms are used, the default implementation is correct (but not necessarily optimal) Even

in cases where the default implementation is correct, Users can always provide more precise

stack requirements based on their knowledge of a particular call graph structure.

To query individual program groups for their stack requirements, use

optixProgramGroupGetStackSize. Use this information to calculate the total required stack

sizes for a particular call graph of NVIDIA OptiX programs. To set the stack sizes for a

particular pipeline, use optixPipelineSetStackSize. For other parameters, helper

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 75

6 Program pipeline creation 6.7 Pipeline stack size

functions are available to implement these calculations. The following is an explanation about

how to compute the stack size for optixPipelineSetStackSize, starting from a very

conservative approach, and refining the estimates step by step.

Let cssRG denote the maximum continuation stack size of all ray-generation programs;

similarly for miss, closest-hit, any-hit, intersection, and continuation-callable programs. Let

dssDC denote the maximum direct stack size of all direct-callable programs. Let

maxTraceDepth denote the maximum trace depth (as in

OptixPipelineLinkOptions::maxTraceDepth), and let maxCCDepth and maxDCDepth

denote the maximum depth of call trees of continuation-callable and direct-callable programs,

respectively. Then a simple, conservative approach to compute the three parameters of

optixPipelineSetStackSize is:

Listing 6.14

directCallableStackSizeFromTraversal = maxDCDepth * dssDC;

directCallableStackSizeFromState = maxDCDepth * dssDC;

cssCCTree =

maxCCDepth * cssCC;
Upper bound on continuation stack used by call trees of
continuation callables

cssCHOrMSPlusCCTree =

max(cssCH, cssMS) + cssCCTree;

Upper bound on continuation stack used by
closest-hit or miss programs, including the
call tree of continuation-callable programs

continuationStackSize = cssRG + cssCCTree

+ maxTraceDepth * cssCHOrMSPlusCCTree

+ cssIS + cssAH;

This computation can be improved in several ways. For the computation of

continuationStackSize, the stack sizes cssIS and cssAH are not used on top of the other

summands, but can be offset against one level of cssCHOrMSPlusCCTree. This gives a more

complex but better estimate:

Listing 6.15

continuationStackSize =

cssRG

+ cssCCTree

+ max(1, maxTraceDepth) - 1) * cssCHOrMSPlusCCTree

+ min(maxTraceDepth, 1) * max(cssCHOrMSPlusCCTree, cssIS+cssAH);

The preceding formulas are implemented by the helper function

optixUtilComputeStackSizes.

The computation of the first two terms can be improved if the call trees of direct-callable

programs are analyzed separately based on the semantic type of their call site. In this context,

call sites in any-hit and intersection programs count as traversal, whereas call sites in

ray-generation, miss, and closest-hit programs count as state.

76 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

6.7 Pipeline stack size 6 Program pipeline creation

Listing 6.16

directCallableStackSizeFromTraversal =

maxDCDepthFromTraversal * dssDCFromTraversal;

directCallableStackSizeFromState =

maxDCDepthFromState * dssDCFromState;

This improvement is implemented by the helper function

optixUtilComputeStackSizesDCSplit.

Depending on the scenario, these estimates can be improved further, sometimes substantially.

For example, imagine there are two call trees of continuation-callable programs. One call tree

is deep, but the involved continuation-callable programs need only a small continuation

stack. The other call tree is shallow, but the involved continuation-callable programs needs a

quite large continuation stack. The estimate of cssCCTree can be improved as follows:

Listing 6.17

cssCCTree = max(maxCCDepth1 * cssCC1, maxCCDepth2 * cssCC2);

This improvement is implemented by the helper function

optixUtilComputeStackSizesCssCCTree.

Similar improvements might be possible for all expressions involving maxTraceDepth if the

ray types are considered separately, for example, camera rays and shadow rays.

6.7.1 Constructing a path tracer

A simple path tracer can be constructed from two ray types: camera rays and shadow rays.

The path tracer will consist only of ray-generation, miss, and closest-hit programs, and will

not use any-hit, intersection, continuation-callable, or direct-callable programs. The camera

rays will invoke only the miss and closest-hit programs MS1 and CH1, respectively. CH1 might

trace shadow rays, which invoke only the miss and closest-hit programs MS2 and CH2,

respectively. That is, the maximum trace depth is two and the initial formulas simplify to:

Listing 6.18

directCallableStackSizeFromTraversal = maxDCDepth * dssDC;

directCallableStackSizeFromState = maxDCDepth * dssDC;

continuationStackSize =

cssRG + 2 * max(cssCH1, cssCH2, cssMS1, cssMS2);

However, from the call graph structure it is clear that MS2 or CH2 can only be invoked from

CH1. This restriction allows for the following estimate:

Listing 6.19

continuationStackSize

= cssRG + max(cssMS1, cssCH1 + max(cssMS2, cssCH2));

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 77

6 Program pipeline creation 6.8 Compilation cache

This estimate is never worse than the previous one, but often better, for example, in the case

where the closest-hit programs have different stack sizes (and the miss programs do not

dominate the expression).

The helper function optixUtilComputeStackSizesSimplePathTracer implements this

formula by permitting two arrays of closest-hit programs instead of two single programs.

6.8 Compilation cache

Compilation work is triggered automatically when calling optixModuleCreate or

optixProgramGroupCreate, and also potentially during optixPipelineCreate. This work

is automatically cached on disk if enabled on the OptixDeviceContext. Caching reduces

compilation effort for recurring programs and program groups. While it is enabled by

default, users can disable it through the use of optixDeviceContextSetCacheEnabled. See

“Context” (page 15) for other options regarding the compilation cache.

Generally, cache entries are compatible with the same driver version and GPU type only.

78 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

7 Shader binding table

The shader binding table (SBT) is an array that contains information about the location of

programs and their parameters. The SBT resides in device memory and is managed by the

application.

7.1 Records

A record is an array element of the SBT that consists of a header and a data block. The header

content is opaque to the application, containing information accessed by traversal execution

to identify and invoke programs. The data block is not used by NVIDIA OptiX and holds

arbitrary program-specific application information that is accessible in the program. The

header size is defined by the OPTIX_SBT_RECORD_HEADER_SIZE macro (currently 32 bytes).

The API function optixSbtRecordPackHeader and a given OptixProgramGroup object are

used to fill the header of an SBT record. The SBT records must be uploaded to the device prior

to an NVIDIA OptiX launch. The contents of the SBT header are opaque, but can be copied or

moved. If the same program group is used in more than one SBT record, the SBT header can

be copied using plain device-side memory copies. For example:

Listing 7.1

template <typename T>

struct Record

{

__align__(OPTIX_SBT_RECORD_ALIGNMENT)

char header[OPTIX_SBT_RECORD_HEADER_SIZE];

T data;

};

typedef Record<RayGenData> RayGenSbtRecord;

OptixProgramGroup raygenPG;
...

RayGenSbtRecord rgSBT;

rgSBT.data.color = make_float3(1.0f, 1.0f, 0.0f);

optixSbtRecordPackHeader(raygenPG, &rgSBT);

CUdeviceptr deviceRaygenSbt;

cudaMalloc((void**)&deviceRaygenSbt, sizeof(RayGenSbtRecord));

cudaMemcpy((void**)deviceRaygenSbt, &rgSBT,

sizeof(RayGenSbtRecord), cudaMemcpyHostToDevice);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 79

7 Shader binding table 7.2 Layout

SBT headers can be reused between pipelines as long as the compile options match between

modules and program groups. The data section of an SBT record can be accessed on the

device using the optixGetSbtDataPointer device function.

7.2 Layout

A shader binding table is split into five sections, where each section represents a unique

program-group type:

Group Program types in group Value of enum OptixProgramGroupKind

Ray generation ray-generation OPTIX_PROGRAM_GROUP_KIND_RAYGEN

Exception exception OPTIX_PROGRAM_GROUP_KIND_EXCEPTION

Miss miss OPTIX_PROGRAM_GROUP_KIND_MISS

Hit intersection, any-hit, closest-hit OPTIX_PROGRAM_GROUP_KIND_HITGROUP

Callable direct-callable, continuation-callable OPTIX_PROGRAM_GROUP_KIND_CALLABLES

OptiX program groups

See also “Program group creation” (page 72).

Pointers to the SBT sections are passed to the NVIDIA OptiX launch:

Listing 7.2

typedef struct OptixShaderBindingTable

{

CUdeviceptr raygenRecord;
Device address of the SBT record of the ray generation
program to start launch

CUdeviceptr exceptionRecord;
Device address of the SBT record of the
exception shader

CUdeviceptr missRecordBase;

unsigned int missRecordStrideInBytes;

unsigned int missRecordCount;

Arrays of SBT records. The base
address, stride in bytes and
maximum index are de�ned.

CUdeviceptr hitgroupRecordBase;

unsigned int hitgroupRecordStrideInBytes;

unsigned int hitgroupRecordCount;

CUdeviceptr callablesRecordBase;

unsigned int callablesRecordStrideInBytes;

unsigned int callablesRecordCount;

} OptixShaderBindingTable;

All SBT records on the device are expected to have a minimum memory alignment, defined

by OPTIX_SBT_RECORD_ALIGNMENT (currently 16 bytes). Therefore, the stride between records

must also be a multiple of OPTIX_SBT_RECORD_ALIGNMENT. Each section of the SBT is an

independent memory range and is not required to be allocated contiguously.

80 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

7.3 Acceleration structures 7 Shader binding table

The selection of an SBT record depends on the program type and uses the corresponding base

pointer. Since there can only be a single call to both ray-generation and exception programs, a

stride is not required for these two program group types and the passed-in pointer is

expected to point to the desired SBT records.

For other types, the SBT record at index sbt-index for a program group of type group-type is

located by the following formula:

group-typeRecordBase + sbt-index * group-typeRecordStrideInBytes

For example, the third record (index 2) of the miss group would be:

missRecordBase + 2 * missRecordStrideInBytes

The index to records in the shader binding table is used in different ways for the miss, hit, and

callables groups:

Miss

Miss programs are selected for every optixTrace call using the missSBTIndex

parameter.

Callables

Callables take the index as a parameter and call the direct-callable when invoking

optixDirectCall and continuation-callable when invoking optixContinuationCall.

Any hit, closest hit, intersection

The computation of the index for the hit group (intersection, any-hit, closest-hit) is done

during traversal. See “Acceleration structures” (page 81) for more detail.

7.3 Acceleration structures

The selection of the SBT hit group record for the instance is slightly more involved to allow

for a number of use cases such as the implementation of different ray types. The SBT record

index sbtIndex is determined by the following index calculation during traversal:

sbt-index =

sbt-instance-offset

+ (sbt-geometry-acceleration-structure-index * sbt-stride-from-trace-call)

+ sbt-offset-from-trace-call

The index calculation depends upon the following SBT indices and offsets:

• Instance offset

• Geometry acceleration structure index

• Trace offset

• Trace stride

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 81

7 Shader binding table 7.3 Acceleration structures

7.3.1 SBT instance o�set

Instance acceleration structure instances (type OptixInstance) store an SBT offset that is

applied during traversal. This is zero for single geometry-AS traversable because there is no

corresponding instance-AS to hold the value. (See Traversal of a single geometry acceleration

structure (page 35).) This value is limited to 28 bits (see the declaration of

OptixInstance::sbtOffset).

7.3.2 SBT geometry-AS index

Each geometry acceleration structure build input references at least one SBT record. The first

SBT geometry acceleration structure index for each geometry acceleration structure build

input is the prefix sum of the number of SBT records. Therefore, the computed SBT geometry

acceleration structure index is dependent on the order of the build inputs.

The following example demonstrates a geometry acceleration structure with three build

inputs. Each build input references one SBT record by specifying numSBTRecords=1. When

intersecting geometry at trace time, the SBT geometry acceleration structure index used to

compute the sbtIndex to select the hit group record will be organized as follows:

SBT geometry-AS index 0 1 2

Geometry-AS build input

Build input[0]

Build input[1]

Build input[2]

In this simple example, the index for the build input equals the SBT geometry acceleration

structure index. Hence, whenever a primitive from “Build input [1]” is intersected, the SBT

geometry acceleration structure index is one.

When a single build input references multiple SBT records (for example, to support multiple

materials per geometry), the mapping corresponds to the prefix sum over the number of

referenced SBT records.

For example, consider three build inputs where the first build input references four SBT

records, the second references one SBT record, and the last references two SBT records:

SBT geometry-AS

index
0 1 2 3 4 5 6

Geometry-AS build

input

Build input[0]

numSBTRecords=4

Build input[1]

numSBTRecords=1

Build input[2]

SBTIndexOffset2

These three build inputs result in the following possible SBT geometry acceleration structure

indices when intersecting the corresponding geometry acceleration structure build input:

82 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

7.3 Acceleration structures 7 Shader binding table

• One index in the range of [0,3] if a primitive from “Build input [0]” is intersected

• Four if a primitive from “Build input [1]” is intersected

• One index in the range of [5,6] if a primitive from “Build input [2]” is intersected

The per-primitive SBT index offsets, as specified by using sbtIndexOffsetBuffer, are local to

the build input. Hence, per-primitive offsets in the range [0,3] for the build input 0 and in the

range [0,1] for the last build input, map to the SBT geometry acceleration structure index as

follows:

SBT geometry-AS index 0 1 2 3 4 5 6

Build input[0]

SBTIndexOffset:

[0]

[1]

[2]

[3]

Build input[1]

SBTIndexOffset=nullptr

Build input[2]

SBTIndexOffset:

[0]

[1]

Because build input 1 references a single SBT record, a sbtIndexOffsetBuffer does not need to

be specified for the geometry acceleration structure build. See “Acceleration structures”

(page 81).

7.3.3 SBT trace o�set

The optixTrace function takes the parameter SBToffset, allowing for an SBT access shift for

this specific ray. It is required to implement different ray types.

7.3.4 SBT trace stride

The parameter SBTstride, defined as an index offset, is multiplied by optixTrace with the

SBT geometry acceleration structure index. It is required to implement different ray types.

7.3.5 Example SBT for a scene

In this example, a shader binding table implements the program selection for a simple scene

containing one instance acceleration structure and two instances of the same geometry

acceleration structure, where the geometry acceleration structure has two build inputs:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 83

7 Shader binding table 7.3 Acceleration structures

Instance acceleration structure

Instance 0 Instance 1

Geometry acceleration structure

numSBTRecords = 1

Build input 0
numSBTRecords = 2

Build input 1

Fig. 7.1 - Structure of a simple scene

The first build input references a single SBT record, while the second one references two SBT

records. There are two ray types: one for forward path tracing and one for shadow rays (next

event estimation). The two instances of the geometry acceleration structure have different

transforms and SBT offsets to allow for material variation in each instance of the same

geometry acceleration structure. Therefore, the SBT needs to hold two miss records and 12 hit

group records (three for the geometry acceleration structure, ×2 for the ray types, ×2 for the

two instances in the instance acceleration structure).

The SBT is structured in the following way:

Raygen Miss instance0.sbtOffset = 0 instance1.sbtOffset = 6

RG0 MS0 MS1 hit0 hit1 hit2 hit3 hit4 hit5 hit6 hit7 hit8 hit9 hit10 hit11

The preceding programs are called for the following combination of geometry and ray types

Instance: 0 0 0 0 0 0 1 1 1 1 1 1

Build input: 0 0 1 1 1 1 0 0 1 1 1 1

SBT index: 0 1 2 3 4 5 6 7 8 9 10 11

SBT instance offset: 0 0 0 0 0 0 6 6 6 6 6 6

SBT geometry-AS index: 0 0 1 1 2 2 0 0 1 1 2 2

Build input SBT index offset: - - 0 0 1 1 - - 0 0 1 1

Trace offset/ray type: 0 1 0 1 0 1 0 1 0 1 0 1 0 1

To trace a ray of type 0 (for example, for path tracing):

Listing 7.3

optixTrace(IAS_handle,

ray_org, ray_dir,

tmin, tmax, time,

visMask, rayFlags,

84 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

7.4 SBT record access on device 7 Shader binding table

0, sbtO�set

2, sbtStride

0, missSBTIndex

rayPayload0, ...);

Shadow rays need to pass in an adjusted sbtOffset as well as missSBTIndex:

Listing 7.4

optixTrace(IAS_handle,

ray_org, ray_dir,

tmin, tmax, time,

visMask, rayFlags,

1, sbtO�set

2, sbtStride

1, missSBTIndex

rayPayload0, ...);

Program groups of different types (ray generation, miss, intersection, and so on) do not need

to be adjacent to each other as shown in the example. The pointer to the first SBT record of

each program-group type is passed to optixLaunch, as described previously, which allows

for arbitrary spacing in the SBT between the records of different program-group types.

7.4 SBT record access on device

To access the SBT data section of the currently running program, request its pointer by using

an API function:

Listing 7.5

CUdeviceptr optixGetSbtDataPointer();

Typically, this pointer is cast to a pointer that represents the layout of the data section. For

example, for a closest-hit program, the application gets access to the data associated with the

SBT record that was used to invoke that closest-hit program:

Listing 7.6 – Data for closest-hit program

struct CHData {

int meshIdx; Triangle mesh build input index

float3 base_color;

};

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 85

7 Shader binding table 7.4 SBT record access on device

CHData* material_info = (CHData*)optixGetSbtDataPointer();

The program is encouraged to rely on the alignment constraints of the SBT data section to

read this data efficiently.

86 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8 Shader execution reordering

8.1 Introduction

Many raytracing workloads by nature exhibit a high amount of divergence. The GPU must

execute different code paths at once (execution divergence) and access data in patterns that are

difficult to coalesce or cache (data divergence). Consider a group of rays bouncing off some

surface in random directions. Even rays that originate closely together will hit different

objects made of different materials and surface characteristics. Evaluating these different

materials requires running different shaders and accessing different textures, vertex

attributes, and other per-object information. The divergence that results from this is

undesirable because modern GPUs perform best when the workload is coherent, that is,

when groups of threads execute similar work and access similar data.

Shader Execution Reordering (SER) is a scheduling technology introduced with the Ada

Lovelace generation of NVIDIA GPUs. It is highly effective at simultaneously reducing both

execution divergence and data divergence. SER achieves this by on-the-fly reordering threads

across the GPU such that groups of threads perform similar work and therefore use GPU

resources more efficiently. This happens with minimal overhead: the Ada hardware

architecture was designed with SER in mind and includes optimizations to the streaming

multiprocessor (SM) and memory system specifically targeted at efficient thread reordering.

Fig. 8.1 - Rays bounce off an object in
different directions, hitting different

materials

Fig. 8.2 - SER reorders threads,
grouping similar work together

Fig. 8.3 - SMs execute shaders
with increased coherence

Using SER, performance can be improved up to two times in raytracing regimes of real-world

applications, achieved with only a small amount of developer effort. In applications, SER is

exposed through a small API that gives developers new flexibility and full control over where

in their shaders reordering will happen. This API is detailed in the following sections.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 87

8 Shader execution reordering 8.2 API overview

8.2 API overview

8.2.1 optixReorder

The main functionality of SER is encapsulated in a single function:

Listing 8.1

void optixReorder(

unsigned int coherenceHint,

unsigned int numCoherenceHintBitsFromLSB);

This function is available in ray-generation shaders. The function does what its name

suggests: it asks the system to reorder the calling thread, along with other threads that also

call optixReorder, across the physical execution units of the GPU. After the function returns,

threads that execute together (for example, in the same warp or on the same SM) will be more

coherent than before optixReorder. Coherence is measured with respect to the argument

passed to optixReorder, which can be thought of as a sort key. In most cases, that key will be

a hit object (described below), which represents the hit location of a ray that was traced into

the scene. However, there are also variants of optixReorder where “key” an additional

coherence hint expressed as a simple number, allowing the function to be used for situations

where more information is known about the coherence beyond what is represented in the hit

object.

8.2.2 optixReorder and raytracing

To see how optixReorder fits into the raytracing programming model, recall that the

standard control flow for a ray tracing operation can be depicted as in Figure 8.4.

Miss Closest hit
Miss Closest hit

Closest hit

Hit?
No Yes

traversal
structure

Acceleration

Ray generation

Intersection

Any hit

Fig. 8.4 - Control flow of optixTrace

The most common and significant source of shading divergence is closest-hit shading, or

more generally, any code that performs material or scene-object-specific computations.

Ideally, reordering should therefore occur after a ray has been cast (that is, when we know the

hit location in the scene), but before further shading takes place. In other words, we’d usually

like to reorder at the position indicated in Figure 8.5 (page 89).

88 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.2 API overview 8 Shader execution reordering

Miss Closest hit
Miss Closest hit

Closest hit

Hit?
No Yes

optixReorder()

traversal
structure

Acceleration

Ray generation

Intersection

Any hit

Fig. 8.5 - A good position for reordering is
after acceleration structure traversal

Note that the standard APIs do allow systems to perform such reordering “under the hood”

but this has a downside: it does not allow an application to influence the decision making on

whether and how to reorder. That is, application-side knowledge, which is often key to

performance, cannot be taken into account. This is where the hit object, combined with

optixReorder, comes into play.

8.2.3 Hit objects

OptiX does not have an explicit object representation of the data associated with a hit during

ray tracing. Instead, functions such as optixGetRayTmin and optixGetInstanceId return

values corresponding to the current hit. Collectively, this data is called the hit object. The hit

object is available during traversal and shading. It represents either the currently intersected

object or the closest intersected object, if any. Several of the hit object values are initialized at

the beginning of traversal, while others are set when a hit is accepted by the any hit program.

The hit object’s role in the ray-tracing process can be divided into four major phases:

1. A call to optixTrace — The current hit object is saved if there is one. A new hit object is

created.

2. Traversal — The hit object is modified and set based on what is intersected and the results

of any hit calls.

3. Shading — The hit object is available to the closest-hit or miss programs to read.

4. The return to the caller — If the previous hit object was saved, it is now restored.

Because there is no explicit representation of the hit object, there can only ever be one hit

object active at a time. If a secondary ray is traced during shading, the current hit object will

be saved so that it may be restored later.

With the introduction of optixTraverse and optixInvoke, an application must be able to

interact with the hit object that is produced by traversal and consumed by shading. For the

purposes of this chapter, the hit object available during traversal and shading will be referred

to as the incoming hit object while the one available outside of traversal and shading will be

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 89

8 Shader execution reordering 8.2 API overview

referred to as the outgoing hit object. Both the incoming and outgoing hit objects can be live at

the same time, but there is only ever one of each at a time. Accessor functions for the

outgoing hit object are distinguished from the incoming hit object with the inclusion of the

string “HitObject” in the device side API functions. For example, optixGetRayTmin accesses

the incoming hit object, while optixHitObjectGetRayTmin accesses the outgoing hit object.

There are three types of hit objects:

• hit

• miss

• nop (“no operation” — neither a hit nor miss will be executed if optixInvoke is called)

You can query the type of hit object through the following functions:

• optixHitObjectIsHit

• optixHitObjectIsMiss

• optixHitObjectIsNop

There are several functions that can set the outgoing hit object:

Function Produces hit Produces miss Produces nop

optixTraverse ✓ ✓

optixMakeHitObject

optixMakeHitObjectWithRecord

(deprecated)

✓

optixMakeMissHitObject ✓

optixMakeNopHitObject ✓

optixInvoke ✓

optixTrace ✓

Since there can be only one outgoing hit object at a time, any function that sets it will

overwrite the existing hit object.

Shading through the invocation of the outgoing hit object “consumes” the outgoing hit object

and the outgoing hit object is set to nop. You can consider optixTrace as effectively a pair of

calls to optixTraverse and optixInvoke, which overwrites the outgoing hit object and

subsequently sets it to nop after the invocation of shading.

Note that after certain calls such as optixTraverse, the hit object can only be of type hit or

miss, so shaders can be written with a single comparison to determine if there is a hit.

Listing 8.2 shows such a comparison:

Listing 8.2

optixTraverse(...);

if(optixHitObjectIsHit())

printf("Ray hit");

else

printf("Ray missed");

90 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.2 API overview 8 Shader execution reordering

For a given function’s scope, there is always a single outgoing hit object which is initialized to

a nop hit object. The function’s scope also extends to any inlined functions. In other words, if

a function is inlined it does not maintain its own scope but rather becomes part of the caller’s

scope.

A nop hit object has no data associated with it and queries against it will return zero.

Note that the following hit object accessors will return undefined values when the hit object is

a miss:

• optixHitObjectGetInstanceId

• optixHitObjectGetInstanceIndex

• optixHitObjectGetPrimitiveIndex

• optixHitObjectGetTransformListHandle

• optixHitObjectGetSbtGASIndex

• optixHitObjectGetHitKind

• optixHitObjectGetAttribute_0...7

After an outgoing hit object is set, the values in the hit object will remain unchanged until a

subsequent call creates a new outgoing hit object.

Setting the outgoing hit object will not affect the incoming hit object. For example, calling

optixTraverse inside a closest-hit shader will not affect the results of the incoming hit object

associated with that closest-hit shader. Note that in the regions of a function where the

incoming hit object is not used, OptiX does not need to save or restore the components of that

hit object, with an improvement in performance as a result.

The role of incoming and outgoing hit objects in function optixTraverse and their context in

the closest-hit program can be summarized as follows.

__ch__

{

The incoming hit object is set by trace/invoke and is accessible throughout the function.

float tmax = optixGetRayTmax(); Returns the incoming hit object tmax.

The outgoing hit object is set to NOP at the start of the function.

Any access to a NOP-value outgoing hit object returns 0.

assert(optixHitObjectGetRayTmax() == 0);

optixTrace() {

Actions during the traversal phase:

Save the incoming hit object.

Set the incoming hit object.

Traverse.

Actions during the invocation phase:

Invoke shading (closest-hit and miss programs).

Set the outgoing hit object to NOP.

Restore the incoming hit object.

}

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 91

8 Shader execution reordering 8.2 API overview

The incoming hit object is preserved across calls to optixTrace.

assert(optixGetRayTmax() == tmaxIncoming);

The outgoing hit object is still NOP.

assert(optixHitObjectGetRayTmax() == 0);

}

When the traversal and shader invocation phases are performed separately with

optixTraverse and optixInvoke, the hit object plays the same role as in optixTrace:

__ch__

{

The incoming hit object is set by trace/invoke and is accessible throughout the function.

float tmax = optixGetRayTmax(); Returns the incoming hit object tmax.

The outgoing hit object is set to NOP at the start of the function.

Any access to an outgoing NOP-value hit object returns 0.

assert(optixHitObjectGetRayTmax() == 0);

optixTraverse() {

Actions taken by the function:

Save the incoming hit object.

Set the incoming hit object.

Traverse.

Set the outgoing hit object to the results of the traversal.

Restore the incoming hit object.

}

The incoming hit object is preserved across calls to optixTraverse.

assert(optixGetRayTmax() == tmaxIncoming);

You can access the outgoing hit object set by optixTraverse.

float tmaxOutgoing = optixHitObjectGetRayTmax();

optixInvoke {

Actions taken by the function:

Save the incoming hit object.

Set the incoming hit object from the outgoing hit object.

Invoke shading (closest-hit and miss programs).

Set the outgoing hit object to NOP.

Restore the incoming hit object.

}

The incoming hit object is preserved across calls to optixInvoke.

assert(optixGetRayTmax() == tmaxIncoming);

The outgoing hit object is set to NOP by calling optixInvoke.

92 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.2 API overview 8 Shader execution reordering

assert(optixHitObjectGetRayTmax() == 0);

}

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 93

8 Shader execution reordering 8.2 API overview

8.2.4 Coherence hints

Using the pattern described in the previous section as a basis, an application can further

inform reordering with coherence hints. Coherence hints are represented as an integer from

which some number of bits are incorporated in the reordering key that the system computes

from a hit object. When numCoherenceHintBitsFromLSB is zero, no user hint bits are used

and coherenceHint is ignored.

Here is the full optixReorder signature:

Listing 8.3

void optixReorder(

unsigned int coherenceHint,

unsigned int numCoherenceHintBitsFromLSB);

In optixReorder, NumCoherenceBitsFromLSB specifies the number of bits that

optixReorder should take into account, starting from the least significant bit.

There is a convenience version of optixReorder where the coherenceHint does not need to be

specified. It is equivalent to calling optixReorder with numCoherenceHintBitsFromLSB and

coherenceHint set to zero.

Listing 8.4

void optixReorder();

The final key used for reordering is then composed from the following components, in

descending order of priority:

1. Shader ID stored in the hit object

2. Coherence hint, with the most significant hint bit having highest priority

3. Spatial information stored in the hit object

With this key design, an application can use coherence hints to incorporate knowledge about

execution divergence into the reordering that isn’t already represented in the hit object. One

example of this is branches within hit shader code, which are often based on material

parameters — whether the material is emissive, has a clear coat layer, casts a shadow ray, etc.

An application may inspect these parameters and include them in the coherence hint before

reordering and executing the shader. One way to store material parameter information is as

root constants in the shader table. A hit object provides a convenient method to read data

from the shader table entry that the hit object represents.

94 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.2 API overview 8 Shader execution reordering

Here is an example pattern that uses the hit object and optixReorder:

Listing 8.5

optixTraverse(sceneIAS, ..., payload);

unsigned int materialFlags =

reinterpret_cast<unsigned int>(

optixHitObjectGetSbtDataPointer());

Inspect the material �ags encoded
as a root constant at o�set 0 in the
Shader table entry of our hit. Note
this requires all closest-hit and
miss programs to encode this
integer.

optixReorder(materialFlags, 4);
Reorder by hit point, using material �ags as
additional coherence hints. Assumes we have
four bits worth of �ags.

optixInvoke(payload);
Invoke shading. Thanks to reordering with coherence hints,
this will be coherent both with respect to which shader is
executed as well as which path is taken through the shaders.

Coherence hints can also be used to reorder threads based on control flow in the

ray-generation shader itself. In the simple loop depicted in Listing 8.6, threads in a warp can

be expected to stay on the same iteration without optixReorder (for example, first i=0, then

i=1). With optixReorder, after executing the call, the value of increment variable i can be

different among threads. This depends on the result of the reordering, which in turn depends

on the contents of the hit object. If this leads to divergence, it is suitable to add a coherence

hint based on i. It is often beneficial to make sure that the entire warp finishes the loop at the

same time.

Listing 8.6

for(unsigned int i = 0; i < 4; ++i) {
...

unsigned int coherenceHints = i == 3 ? 1 : 0;

optixReorder(coherenceHints, 1);

Reorder based on a hit
object, while also grouping
threads that will exit the
loop.

...

}

A related situation can be found in path tracers or multi-bounce reflections. In those

processes, it is often highly effective to include in the coherence hint some additional

information about whether the main loop will terminate. On top of executing hit shaders

coherently, this has the effect of compacting threads into warps for the next iteration of the

loop. Hence, the number of inactive lanes from threads that exit the loop early is reduced.

This benefits both the execution of the loop itself, as well as the utilization of the RT Core

hardware, which operates more effectively the more threads per warp are active at the time

optixTrace is called.

Listing 8.7 is a pseudocode example of shader reordering based on coherence hints:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 95

8 Shader execution reordering 8.2 API overview

Listing 8.7

while(...) { Loop over light bounces

optixTraverse(sceneIAS, ..., payload);

float albedo = *reinterpret_cast<float*>(

optixHitObjectGetSbtDataPointer());

bool done = russianRoulette(payload, albedo) ||

bounceCount >= maxBounces;

unsigned int coherenceHints = done ? 1 : 0;

Before we reorder,
�gure out if this will
be the last loop
iteration, and encode
that information in a
coherence hint bit.

optixReorder(coherenceHints, 1);

optixInvoke(payload);
Reorder and shade

if(done)

break;

Because we included the "done" �ag in the coherence hints, chances are
good that all threads in the warp will make the same decision about
whether or not to break out of the loop.

}

Sometimes, predicting the exact control flow is impossible at the point where a coherence hint

is computed. In such situations, it is important to remember that it may be sufficient to have a

confident estimate rather than an exact value for the coherence hint. A confident estimate is

sufficient because reordering only affects performance, not correctness, so that an

approximate coherence hint is often better than none at all.

8.2.5 More ways to use the hit object

The hit object is the mechanism that enables the splitting of optixTrace into two phases and

by extension the combination of application-side and system-side knowledge to inform

reordering. It is worth noting, however, that hit object is a versatile tool in and of itself even

without support for reordering. It allows an application to implement concepts that were

difficult or impossible to achieve with the traditional raytracing programming model. Some

examples that have proven useful in practice include the following.

Not executing closest-hit shading after casting a ray

In some situations, it is useful to cast a ray without triggering shading, but while still

obtaining basic information about the hit. Shadow or ambient occlusion rays are common

examples, where material shading typically isn’t needed, but knowing the closest

intersection distance can be useful for filtering. The existing API provides the

OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT ray flag, but using it offers no way to obtain

information about the closest hit. The typical solution is to write a trivial closest-hit shader

that only fills the payload with the desired hit information. A hit object provides a simpler

and more efficient path: one can simply trace the ray using optixTraverse and then use

state functions to inspect the resulting hit object without ever calling optixInvoke. See

“The hit object’s state” (page 103).

96 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.3 Best practices 8 Shader execution reordering

Listing 8.8

optixTraverse(sceneIAS, ..., payload);

bool hitDistance = MAX_FLT;

if(optixHitObjectIsHit())

hitDistance = optixHitObjectGetRayTmax();

Executing closest-hit shading without casting a ray

(Deprecated.)

Custom indexing into the shader table

The shader table record that optixTrace invokes is found using a formula that takes into

account a number of factors from various sources, described in “Acceleration structures”

(page 81). This provides some amount of flexibility, but the formula itself is fixed and

imposes certain constraints. A hit object may be constructed referencing an arbitrary shader

record, which opens new possibilities when it comes to shader table organization. This can

be interesting particularly in applications that only use a single combined any-hit and

intersection shader across all objects in the scene. In such cases, all instances can refer to the

same shader table range used only to trigger any-hit and intersection shaders, while the

closest-hit or miss shader is selected using a manually computed index.

8.3 Best practices

8.3.1 When to use (and when not to use) reordering

The implementation of optixReorder is highly optimized but its execution is not without

cost. Because the benefits of reordering depend on the work that is executed after reordering,

there are situations where reordering is not advisable.

For example, hit shaders for shadow or ambient occlusion rays are typically trivial, which

means that spending additional cycles to extract coherence for such shaders is usually not

worth the cost. The same is true for cases where rays are very coherent to begin with, like

primary rays.

Furthermore, work following optixReorder may not actually benefit from hit coherence.

Consider that reordering threads with respect to their ray hit location means giving up on the

2D screen-space locality that physical threads have by default. This can reduce the

performance of reading or writing data indexed by the launch index, which can turn

reordering into a net loss when the rest of the workload is particularly cheap.

Reordering is most beneficial in situations that exhibit non-trivial hit shading (irrespective of

whether the shading code lives in the ray-generation or closest-hit shader), paired with at

least moderate divergence in the ray distribution. Reflection regimes are a typical example,

especially when the reflections are glossy or diffuse. In general, the more numerous and the

more complex the shaders, and the more object-space or world-space data they access

(textures, vertex attributes, environment probes, etc.), the more potential there is for

reordering to improve performance. Note, however, that a high shader count isn’t necessarily

required. Using coherence hints to decrease data divergence can yield performance gains

even in applications that use only a single shader across the entire scene. Scenarios like

multi-bounce reflections or full-fledged path tracers increase the potential even further,

because additional execution divergence comes from the main loop itself. As indicated in the

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 97

8 Shader execution reordering 8.3 Best practices

examples earlier, incorporating information about the loop state into coherence hints can

yield additional performance improvements.

Furthermore, when multiple rays are traced in a loop, it can be important to reorder in a way

that is optimized towards subsequent rays. For example, if multiple rays are traced from the

same origin with cheap shading, such as in an ambient occlusion shader, reordering after each

ray may increase divergence in the ray origin for the next ray. Instead, it can be better to

reorder once before the loop based on the common origin. In a path tracing loop, it can make

sense to reorder for each radiance ray, but not for the one-off shadow ray from which the light

path is not continued.

Generally speaking, when and where SER is beneficial varies by application and depends on

a number of factors. The API can be integrated into most engines with low engineering effort,

which makes it easy to experiment with the feature. A good starting point is to replace

traditional optixTrace calls with optixTraverse/optixReorder/optixInvoke equivalent,

which is often enough to show some initial performance gains. From there, further

optimizations like coherence hints, live-state reduction, etc., can be explored.

8.3.2 Optimizing warp coherence

Most developers familiar with GPU programming are accustomed to the concept of warp

coherence and it is one of the most effective metrics for SER optimization. Warp coherence,

that is, the number of threads active in a warp on average, is a good proxy for the general

execution coherence improvements that an application will achieve by using optixReorder.

8.3.3 Optimizing live state

Reordering threads across execution units on the GPU also requires migrating their live state

through the memory system. Live state consists of any variables that are defined before

reordering and used after reordering; that is, any variables that must persist across an

optixReorder call. The smaller that state is, the lower the overhead of the optixReorder call.

Applications should therefore strive to reduce live state as much as possible.

Manually optimizing for live state can be challenging, mainly for two reasons. First, unless

the shader code is very simple, it is hard to spot variables that are live across an

optixReorder call just by inspecting the shader code. Second, the compiler can often

eliminate much of the live-state memory traffic, which might lead to the developer

optimizing for variables that do not affect performance to begin with.

Applications should target OptiX-IR (page 64) and use CUDA’s __restrict__ keyword

wherever possible. OptiX-IR provides more state information to the compiler than PTX,

which improves the accuracy of the compiler’s live-state analysis. This, in turn, enables

additional optimizations and in many cases reduces migrated state. The

__restrict__ keyword also carries additional information in OptiX-IR modules, enabling

the compiler to avoid live-state migration caused by function calls. Note that the

__restrict__ keyword improves live-state analysis in OptiX-IR only; it is ignored in PTX.

For more information about the role of the __restrict__ keyword, see the CUDA

documentation.1

1. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=__restrict__
#restrict

98 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=__restrict__#restrict
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=__restrict__#restrict

8.4 API Reference 8 Shader execution reordering

8.3.4 Using coherence hint bits judiciously

As discussed in previous sections, coherence hints are an important mechanism that the

developer can use to insert application-side knowledge into the reordering. The more

coherence-hint bits are used, the higher the granularity at which an application can control

reordering. However, using more coherence-hint bits also reduces the resolution at which the

hit object can be taken into account. Developers should keep this trade-off in mind and not

use more coherence-hint bits than necessary. In particular, numCoherenceHintBitsFromLSB

should only be set to the number of coherence-hint bits that are actually relevant, and no

higher.

8.3.5 Tailoring payload types to invoked shaders

When replacing a call to optixTrace with its hit object equivalents, it is most straightforward

to use the same payload type in both optixTraverse and optixInvoke. However, it is not

mandatory that the payload types used in these functions match. The only requirement is that

the payload type used at each call site matches the expectations in the shaders that are

actually executed. It is not unusual that the payload requirements between shaders invoked

from optixTraverse (any-hit and intersection) and those invoked from optixInvoke

(closest-hit and miss) can differ. A frequent example is that any-hit shaders require a smaller

payload than closest-hit, because any-hit shaders are only used for simple alpha testing. In

cases like these, an application should use different actual payload types — ideally combined

with a payload type as described in the API reference. Using different payload types

guarantee that register pressure from unnecessary payload fields is avoided as much as

possible, which can help increase overall performance. (See “Interaction with payload

semantic types” (page 104).)

8.4 API Reference

8.4.1 Querying optixReorder behavior

The optixReorder API is available on all raytracing-capable GPUs, but its behavior depends

on the GPU architecture. In most cases, an application can ignore this fact, and can simply use

optixReorder as if reordering was always supported. This works because thread reordering

affects performance, but not correctness. optixReorder acting as a no-op on previous

generation GPUs can therefore be viewed as an implementation of reordering that just

happens to reproduce its input order (producing no benefit, but also not incurring any cost).

However, there are cases where it can make sense to make higher-level decisions based on the

behavior of optixReorder. For example, an application might have a legacy path that

performs manual shader binning, which it would like to enable for GPUs that do not support

SER reordering. The behavior of optixReorder can be queried using

optixDeviceContextGetProperty.

Listing 8.9

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 99

8 Shader execution reordering 8.4 API Reference

unsigned int SERFlags = 0;

optixDeviceContextGetProperty(

s_context,

OPTIX_DEVICE_PROPERTY_SHADER_EXECUTION_REORDERING,

&SERFlags, sizeof(unsigned int));

Check to see if this
device can support
reordering.

if(SERFlags ==

OPTIX_DEVICE_PROPERTY_SHADER_EXECUTION_REORDERING_FLAG_NONE) {

std::cout << "Device does not support SER";

}

8.4.1.1 optixTraverse

Similar to optixTrace, but does not invoke the closest-hit or miss shader. Instead, it

overwrites the current outgoing hit object with the results of traversing the ray. The outgoing

hit object may be invoked at some later point with optixInvoke or used with optixReorder.

The outgoing hit object can also be queried through various functions such as

optixHitObjectIsHit or optixHitObjectGetAttribute_0.

Listing 8.10

template <typename... Payload>

void optixTraverse(

OptixTraversableHandle handle,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime,

OptixVisibilityMask visibilityMask,

unsigned int rayFlags,

unsigned int SBToffset,

unsigned int SBTstride,

unsigned int missSBTIndex,

Payload&... payload);

Listing 8.11

template <typename... Payload>

void optixTraverse(

OptixPayloadTypeID type,

OptixTraversableHandle handle,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime,

OptixVisibilityMask visibilityMask,

100 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.4 API Reference 8 Shader execution reordering

unsigned int rayFlags,

unsigned int SBToffset,

unsigned int SBTstride,

unsigned int missSBTIndex,

Payload&... payload);

8.4.1.2 optixMakeHitObject

Deprecated. Constructs an outgoing hit object from the hit information provided. This hit

object will now become the current outgoing hit object and will overwrite the current

outgoing hit object.

Listing 8.12

template <typename... RegAttributes>

void optixMakeHitObject(

OptixTraversableHandle handle,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime,

unsigned int SBToffset,

unsigned int SBTstride,

unsigned int instIdx,

unsigned int sbtGASIdx,

unsigned int primIdx,

unsigned int hitKind,

RegAttributes... regAttributes);

8.4.1.3 optixMakeHitObjectWithRecord

Deprecated. Constructs an outgoing hit object from the hit information provided. The shader

binding table record index is explicitly specified. This hit object will now become the current

outgoing hit object and will overwrite the current outgoing hit object.

Listing 8.13

template <typename... RegAttributes>

void optixMakeHitObjectWithRecord(

OptixTraversableHandle handle,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime,

unsigned int sbtRecordIndex,

unsigned int instIdx,

const OptixTraversableHandle* transforms,

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 101

8 Shader execution reordering 8.4 API Reference

unsigned int numTransforms,

unsigned int sbtGASIdx,

unsigned int primIdx,

unsigned int hitKind,

RegAttributes... regAttributes);

8.4.1.4 optixMakeMissHitObject

Creates a hit object representing a miss based on values explicitly passed as arguments,

without tracing a ray. The provided shader table index must reference a valid miss record in

the shader table.

Listing 8.14

void optixMakeMissHitObject(

unsigned int missSBTIndex,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime);

8.4.1.5 optixMakeNopHitObject

Constructs an outgoing hit object that when invoked with optixInvoke does nothing (neither

the miss nor the closest-hit shader will be invoked). This hit object will now become the

current outgoing hit object and will overwrite the current outgoing hit object. Accessors such

as optixHitObjectGetInstanceId will return 0 or 0 filled structs. Only

optixHitObjectIsNop will return a non-zero result.

Listing 8.15

void optixMakeNopHitObject();

8.4.1.6 optixInvoke

Invokes the closest-hit shader, the miss shader or nop, based on the current outgoing hit

object. After execution the current outgoing hit object will be set to nop. An implied nop hit

object is always assumed to exist even if there are no calls to optixTraverse,

optixMakeHitObject, optixMakeMissHitObject, or optixMakeNopHitObject.

Listing 8.16

template <typename... Payload>

void optixInvoke(Payload&... payload);

102 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.4 API Reference 8 Shader execution reordering

Listing 8.17

template <typename... Payload>

void optixInvoke(OptixPayloadTypeID type, Payload&... payload);

8.4.1.7 The hit object’s state

Retrieve information from the current outgoing hit object. An implied nop hit object is always

assumed to exist even if there are no calls to optixTraverse, optixMakeHitObject,

optixMakeMissHitObject, or optixMakeNopHitObject.

Listing 8.18

bool optixHitObjectIsMiss();

bool optixHitObjectIsHit();

bool optixHitObjectIsNop();

unsigned int optixHitObjectGetInstanceId();

unsigned int optixHitObjectGetInstanceIndex();

unsigned int optixHitObjectGetPrimitiveIndex();

unsigned int optixHitObjectGetTransformListSize();

OptixTraversableHandle optixHitObjectGetTransformListHandle(

unsigned int index);

unsigned int optixHitObjectGetSbtGASIndex();

unsigned int optixHitObjectGetHitKind();

float3 optixHitObjectGetWorldRayOrigin();

float3 optixHitObjectGetWorldRayDirection();

float optixHitObjectGetRayTmin();

float optixHitObjectGetRayTmax();

float optixHitObjectGetRayTime();

unsigned int optixHitObjectGetAttribute_0();

unsigned int optixHitObjectGetAttribute_1();

unsigned int optixHitObjectGetAttribute_2();

unsigned int optixHitObjectGetAttribute_3();

unsigned int optixHitObjectGetAttribute_4();

unsigned int optixHitObjectGetAttribute_5();

unsigned int optixHitObjectGetAttribute_6();

unsigned int optixHitObjectGetAttribute_7();

unsigned int optixHitObjectGetSbtRecordIndex();

CUdeviceptr optixHitObjectGetSbtDataPointer();

8.4.2 optixReorder

Reorders threads based on the current outgoing hit object and a coherence hint value.

Parameter NumCoherenceHintBits indicates how many of the least significant bits of

CoherenceHint should be considered during reordering, with a maximum of 16.

Applications should set this to the lowest value required to represent all possible values in

coherenceHint. For best performance, all threads should provide the same value for

numCoherenceHintBits.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 103

8 Shader execution reordering 8.4 API Reference

Listing 8.19

void optixReorder(

unsigned int coherenceHint,

unsigned int numCoherenceHintBits);

Reordering will consider information in the hit object and coherence hint with the following

priority:

1. Shader ID stored in the hit object

2. Coherence hint, with the most significant hint bit having highest priority

3. Spatial information stored in the hit object

This ordering implies that optixReorder will first attempt to group threads whose hit object

references the same shader ID. (Miss shaders and nop hit objects are grouped separately).

Within each of these groups, it will attempt to order threads by the value of their coherence

hints. Within ranges of equal coherence hints, it will also attempt to maximize locality in 3D

space of the ray hit (if any).

You can use optixReorder without arguments as a convenience function that supplies 0 for

numCoherenceHintBits thereby ignoring any values in coherenceHint. Only information in

the current outgoing hit object will be considered when reordering.

Listing 8.20

void optixReorder();

8.4.2.1 Interaction with payload semantic types

Payload semantic types describe how information flows between shader stages in

optixTrace. Figure 8.6 shows this information flow:

caller any hit closest hit | miss caller

Fig. 8.6 - Information flow between optixTrace shader stages

With the hit object, control is returned to the caller after optixTrace has finished. Therefore,

[caller] is inserted between [any hit] and [closest hit | miss]:

caller any hit caller

caller closest hit | miss caller

Fig. 8.7 - Information flow change with hit object

104 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

8.4 API Reference 8 Shader execution reordering

To allow interchangeability of payload types between optixTrace and the

optixTraverse/optixInvoke execution model, the following additional rules apply:

• At the call to optixTraverse, any field declared as

OPTIX_PAYLOAD_SEMANTICS_MS_READ or OPTIX_PAYLOAD_SEMANTICS_CH_READ is

treated as OPTIX_PAYLOAD_SEMANTICS_TRACE_CALLER_READ .

• At the call to optixInvoke, any field declared as OPTIX_PAYLOAD_SEMANTICS_AH_WRITE

is treated as OPTIX_PAYLOAD_SEMANTICS_TRACE_CALLER_WRITE .

Note, these rules equally apply to the READ_WRITE flags.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 105

8 Shader execution reordering 8.4 API Reference

106 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

9 Curves and spheres

9.1 Di�erences between curves, spheres, and triangles

Ray tracing curves or spheres with NVIDIA OptiX is similar to the procedure for ray tracing

triangles; see “Curve build inputs” (page 25) . The differences between curves, spheres, and

triangles include the following:

• In the triangle build input, the index buffer is optional. In the curves build input, it is

mandatory. In the spheres build input, it is missing.

• Each curves build input references just a single SBT record. Unlike triangles or spheres,

there is no per-primitive SBT index. It is still possible to use multiple materials for curves

in the same BVH, by using multiple build inputs, one per material. (Because there is

only one SBT record, the OptixGeometryFlags are specified by only one int, rather than

an array of ints.)

• There is no preTransform field for curves or spheres. If there were, a nonuniform scale

or shear transformation would yield different results as a pre-transform than as an

instance transform. Nonuniform instance transforms of curves create elliptical cross

sections, while preTransform would still have a circular cross section.

• Each shader binding table record for curves requires a hit group that uses a built-in

intersection program for curves. In the OptixProgramGroupHitgroup, you must use a

module returned by optixBuiltinISModuleGet() for moduleIS, and nullptr for

entryFunctionNameIS. This also applies to spheres.

• Curves or spheres must be explicitly enabled in the pipeline to be rendered; triangles

and custom primitives are enabled by default. This is enabled in the

OptixPipelineCompileOptions::usesPrimitiveTypeFlags by setting the relevant

bits from OptixPrimitiveTypeFlags.

Listing 9.1

OptixPipelineCompileOptions pipelineCompileOptions = {};
...

pipelineCompileOptions.usesPrimitiveTypeFlags =

OPTIX_PRIMITIVE_TYPE_FLAGS_TRIANGLE |

OPTIX_PRIMITIVE_TYPE_FLAGS_CUSTOM |

OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_LINEAR |

OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_QUADRATIC_BSPLINE |

OPTIX_PRIMITIVE_TYPE_FLAGS_FLAT_QUADRATIC_BSPLINE |

OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_CUBIC_BSPLINE |

OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_CATMULLROM |

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 107

9 Curves and spheres 9.3 Curves and the hit program

OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_CUBIC_BEZIER |

OPTIX_PRIMITIVE_TYPE_FLAGS_SPHERE;

• To render motion blur for any primitive, motion blur must be enabled in the pipeline.

But for curves or spheres, motion blur must also be enabled in the built-in intersection

program, by setting the OptixBuiltinISOptions::usesMotionBlur flag. (Note this

flag should only be set to true when using vertex motion blur, not when using motion

transform blur.) The values of the OptixBuiltinISOptions::buildFlags must also

match the corresponding build flags in OptixAccelBuildOptions::buildFlags that

were used for building the acceleration structure, and

OptixBuiltinISOptions::curveEndcapFlags must match

OptixBuildInputCurveArray::endcapFlags.

9.2 Splitting curve segments

NVIDIA OptiX can split curve segments into multiple sub-segments, and bound the

sub-segments separately. This gives faster performance but costs more memory. Splitting can

be controlled via OptixBuildFlags, using OPTIX_BUILD_FLAG_PREFER_FAST_TRACE for a

splitting factor higher than default, and OPTIX_BUILD_FLAG_PREFER_FAST_BUILD for a lower

splitting factor.

Note: Splitting means that the same primitive (the same curve segment) can be hit

multiple times by a ray. Geometry with

OPTIX_GEOMETRY_FLAG_REQUIRE_SINGLE_ANYHIT_CALL set is not split; in this case, each

segment can only be hit once, but a longer curve strand composed of multiple segments

can still be hit more than once.

9.3 Curves and the hit program

In hit programs, non-ribbon curve hits provide a single attribute: the curve parameter (“u”)

within the segment corresponding to the intersection, returned by

optixGetCurveParameter(). When and only when an end cap is hit, the “u” parameter

returned is exactly 0.0 or 1.0. For ribbon hits, two attributes are provided by

optixGetRibbonParameters(). In addition to parameter “u” along the curve axis, parameter

“v” along the width is returned. The range of parameter “v” is -1.0 to 1.0. As with all hit

programs, optixGetRayTmax() returns the ray parameter (“t”), from which the hit point can

be computed, and optixGetPrimitiveIndex() returns the segment’s primitive index. To

maximize performance, no other geometry attributes are passed or precomputed. Instead, the

program must compute whatever curve geometry it requires using the vertex data. For

ribbons, you can compute the geometric normal by passing in the primitive index and the

ribbon parameters to optixGetRibbonNormal().

optixGetRibbonNormal

To make vertex data available to your OptiX shaders (for example your closest-hit program),

the geometry acceleration structure build flag must include

OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS. (See “Build flags” (page 28).) To fetch

the vertex positions and radius values for the segment, pass the primitive index to the

function appropriate for the curve type:

108 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

9.4 Spheres and the hit program 9 Curves and spheres

optixGetLinearCurveVertexData

optixGetQuadraticBSplineVertexData

optixGetCubicBSplineVertexData

optixGetCatmullRomVertexData

optixGetCubicBezierVertexData

optixGetRibbonVertexData

Sample code is provided to interpolate the curve points and radii, and to compute tangents,

normals, and derivatives; see header file SDK/cuda/curve.h. A single hit program can (and

should) handle multiple curve primitive types by checking the value of

optixGetPrimitiveType(). For example, see optixHair.cu in the optixHair code sample.

The optixGetCurveParameter and optixGetRibbonParameters functions return the “u”

parameter value relative to a single polynomial segment of the curve. If needed, the hit

program can map this to the parameter value relative to the entire multi-segment strand. For

instance, this can be used to interpolate between two colors specified at the root and tip of a

hair. This segment-to-strand mapping is the application’s responsibility; see the optixHair

code sample for an example implementation.

9.4 Spheres and the hit program

Hit programs for spheres report a maximum of two intersections of a ray with a sphere,

ordered along the ray. The second intersection is represented by the single attribute of the

sphere hit: the ray parameter of the second hit with the sphere, if a second hit exists,

otherwise 0. The function optixGetRayTmax() returns the ray parameter (“t”), from which the

first hit point can be computed, together with the hit type. The function

optixGetPrimitiveIndex() returns the sphere’s primitive index. Similar to curves, no other

geometry attributes are passed or precomputed. Instead, the program must compute

whatever sphere geometry it requires (surface normals, etc.) using the vertex data.

To make vertex data available to OptiX shaders (for example the closest-hit program), the

build flag of the geometry acceleration structure must include

OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS. (See “Build flags” (page 28).) By

including this flag, the function optixGetSphereData can acquire the vertex positions and

radius values for the sphere.

9.5 Interpolating curve endpoints

A B-spline curve typically does not interpolate (that is, does not touch) its control points. In

particular, in contrast to a Bézier curve, it does not reach as far as its first and last control

points:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 109

9 Curves and spheres 9.6 Back-face culling

Fig. 9.1 - The curve does not reach
the first and last control points

If desired, the application can modify the control point sequence to interpolate these points,

by adding an additional control point at each end:

Fig. 9.2 - Adding points (in green) to extend the curve

Following the Universal Scene Description documentation,1 let’s call these “phantom” points,

resulting in “pinned” curves. A phantom point is constructed by reflecting through the

endpoint the point that preceded it. Given control points p1, p2...pn, the phantom points can

be defined geometrically by:
p0 = p1 + (p1 − p2)

pn+1 = pn + (pn − pn−1)

It is also possible to interpolate endpoints by repeating them. For cubic B-spline curves, a

control point that is repeated 3 times will be interpolated. OptiX allows this, but the phantom

point method is preferred, as it is numerically more stable, and permits control of curvature.

Note: The additional points must be added to the build input by the application. These

points are not added by NVIDIA OptiX itself.

9.6 Back-face culling

The tube of a curve primitive is considered hollow, and back faces are culled. Thus if a ray

starts inside a curve primitive (inside the tube), it will not hit that primitive. This is

convenient for secondary rays and for transparency. However, see “Limitations” (page 111)

below.

Back faces of spheres are not culled. A ray is allowed to start inside the sphere. In this case,

the reported (single) hit would be a back-face hit. Functions optixIsBackFaceHit or

1. https://graphics.pixar.com/usd/docs/api/class_usd_geom_basis_curves.html#UsdGeomBasisCurves_
Segment

110 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

https://graphics.pixar.com/usd/docs/api/class_usd_geom_basis_curves.html#UsdGeomBasisCurves_Segment

9.7 Limitations 9 Curves and spheres

optixIsFrontFaceHit can be used to determine which face has been hit. For secondary rays,

it can be useful to ignore back-face hits.

9.7 Limitations

There are some caveats to be aware of when using curves and curve hit programs.

Multiple hits

For a ray that intersects a single curve segment more than once, NVIDIA OptiX does not

guarantee that all intersections will be reported as hits. In particular, the any-hit program

will in general not be called more than once for a given segment. To implement

transparency, the alternative approach to using an any-hit program is to use closest-hit

and relaunch a continuation ray from each hit.

Back-face culling

While the tube is mostly hollow, in the current implementation a ray can hit an internal

endcap, meaning an endcap between two segments of a strand. For typical curves that

are much longer than they are wide, this is often not noticeable. To avoid hitting internal

endcaps, adjust secondary rays to launch from outside the tube.

Triple control points

As noted in “Interpolating curve endpoints” (page 109), duplicating control points is

possible in NVIDIA OptiX, but the use of phantom points is preferred. Duplicating the

ending control points is numerically challenging (the derivative is zero) and the first

segment is forced to be straight.

Convoluted cases

Curves for hair, fur, cloth fibers, etc., are typically thin with relatively gentle curvature. It

is possible to construct curve segments with tight curvature (relative to width),

self-intersections, or rapidly varying radii that will exhibit artifacts, particularly if

rendered up close. In many cases, these can be remedied by splitting the segment into 3

smaller segments.

Ribbon basis type and representation

Ribbons are oriented curves, where the basis type is restricted to uniform quadratic

B-splines. As described in “Curve build inputs” (page 25), it is assumed that the

segments of a ribbon strand have overlapping control points. The first index of a ribbon

build input should be 0; there are no unused control points at the beginning of the vertex

data.

Ribbons with user-specified normals (orientations)

Ribbons can be used without any specified orientations. The orientation is computed

automatically from the shape of the curve axis, taking its tangent along the strand into

account. For many applications, such as modeling grass, this computation produces the

intended orientations and should be the preferred method. Alternatively, normals can be

provided for orienting the ribbons. The normals are not control points of a quadratic

B-spline, but are linearly interpolated along the segment. The normals need to fit the

curve geometry sufficiently, otherwise the connections between segments may not be

smooth. Non-smooth segment borders may also show up for straight ribbon strands.

These can be addressed by slightly perturbing the control points of the strand.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 111

9 Curves and spheres 9.7 Limitations

112 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

10 Ray generation launches

The API function described in this section is:

optixLaunch

A ray generation launch is the primary workhorse of the NVIDIA OptiX API. A launch

invokes a 1D, 2D or 3D array of threads on the device and invokes ray generation programs

for each thread. When the ray generation program invokes optixTrace, other programs are

invoked to execute traversal, intersection, any-hit, closest-hit, miss and exception programs

until the invocations are complete.

A pipeline requires device-side memory for each launch. This space is allocated and managed

by the API. Because launch resources may be shared between pipelines, they are only

guaranteed to be freed when the OptixDeviceContext is destroyed.

To initiate a pipeline launch, use the optixLaunch function. All launches are asynchronous,

using CUDA streams. When it is necessary to implement synchronization, use the

mechanisms provided by CUDA streams and events.

In addition to the pipeline object, the CUDA stream, and the launch state, it is necessary to

provide information about the SBT layout, including: This includes:

• The base addresses for sections of the SBT that hold the records of different types

• The stride, in bytes, along with the maximum valid index for arrays of SBT records. The

stride is used to calculate the SBT address for a record based on a given index. (See

“Layout” (page 80).)

The value of the pipeline launch parameter is specified by the

pipelineLaunchParamsVariableName field of the OptixPipelineCompileOptions struct. It

is determined at launch with a CUdeviceptr parameter, named pipelineParams, that is

provided to optixLaunch. Note the following restrictions:

• If the size specified by the pipelineParamsSize argument of optixLaunch is smaller

than the size of the variable specified by the modules, the non-overlapping values of the

parameter will be undefined.

• If the size is larger, an error will occur.

(See “Pipeline launch parameter” (page 68).)

The kernel creates a copy of pipelineParams before the launch, so the kernel is allowed to

modify pipelineParams values during the launch. This means that subsequent launches can

run with modified pipeline parameter values. Users cannot synchronize with this copy

between the invocation of optixLaunch and the start of the kernel.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 113

10 Ray generation launches

Note: Concurrent launches with different values for pipelineParams in the same

pipeline triggers serialization of the launches. Concurrency requires a separate pipeline

for each concurrent launch.

The dimensions of a launch must also be specified. If one-dimensional launches are required,

use the width as the dimension of the launch and set both a height and a depth of 1. If

two-dimensional launches are required, set the width and the height as the dimension of the

launch and set a depth of 1.

Dimension Width Height Depth

1D width 1 1

2D width height 1

3D width height depth

Specifying different dimensions for a launch

For example:

Listing 10.1

CUstream stream = nullptr;

cuStreamCreate(&stream);

CUdeviceptr raygenRecord, hitgroupRecords;

... Generate acceleration structures and SBT records

unsigned int width = ...;

unsigned int height = ...;

unsigned int depth = ...;

OptixShaderBindingTable sbt = {};

sbt.raygenRecord = raygenRecord;

sbt.hitgroupRecords = hitgroupRecords;

sbt.hitgroupRecordStrideInBytes = sizeof(HitGroupRecord);

sbt.hitgroupRecordCount = numHitGroupRecords;

MyPipelineParams pipelineParams = ...;

CUdeviceptr d_pipelineParams = 0;

... Allocate and copy the params to the device

optixLaunch(pipeline, stream,

d_pipelineParams, sizeof(MyPipelineParams),

&sbt, width, height, depth);

114 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

11 Limits

The previous chapters described properties that have an upper limit lower than the limit

implied by the data type of the property. The values of these limits depend on the GPU

generation for which the device context is created. These values can be queried at runtime

using optixDeviceContextGetProperty.

Limit values may change from one OptiX SDK version to the next but not internally with

updated NVIDIA drivers. Updated drivers use the limit values of the SDK version employed

during application compilation as well as the GPU generation. The following table lists the

NVIDIA OptiX limit values for the currently supported GPU generations, including Turing:

Type of limit Limit no
n-

R
T

X
ca

rd
s

R
T

X
-e

na
bl

ed
Tu

ri
ng

A
m

pe
re

A
da

Lo
ve

la
ce

Acceleration structure Maximum number of primitives per geometry
acceleration structure including motion keys

229 229 229 229

Maximum number of referenced SBT records per
geometry acceleration structure

224 224 224 224

Maximum number of instances per instance acceleration
structure

228* 228* 228* 228*

Number of bits for SBT offset 28* 28* 28* 28*

Number of bits for instance ID 28* 28* 28* 28*

Number of bits for visibility mask 8 8 8 8

Pipeline Maximum trace (recursion) depth 31 31 31 31

Maximum traversable graph depth 31 31 31 31

Device functions Number of bits for optixTrace – visibilityMask 8 8 8 8

Number of bits for optixTrace – SBTstride 4 4 4 4

Number of bits for optixTrace – SBToffset 4 4 4 4

Number of bits for optixReportIntersection –
hitKind

7 7 7 7

Hardware version RT Cores version (read as x.x) 00 10 20 30

Support for displaced micro-meshes no yes yes yes

NVIDIA OptiX limits

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 115

11 Limits

Note: In the table, values marked with * were raised beginning in NVIDIA OptiX

version 7.1. For code compiled with OptiX SDK version 7.0, the limit is 24.

For the instance properties SBT offset, instance ID, and visibility mask, the higher bits of the

32-bit struct member must be set to zero. In case of the device functions, any bits higher than

those specified in the table are ignored. Limits for device functions cannot be queried at

runtime.

For more information on CUDA limits and supported features, see Appendix K: Compute

Capabilities1 in the Cuda Toolkit documentation. However, note that the upper limit for the

size of an OptiX launch requires width × height × depth ≤ 230.

1. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

116 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

12 Device-side functions

The NVIDIA OptiX device runtime provides functions to set and get the ray tracing state and

to trace new rays from within user programs. The following functions are available in all

program types:1

optixGetTransformTypeFromHandle optixIsBackFaceHit(hitKind)

optixGetInstanceChildFromHandle optixGetTriangleVertexData

optixGetInstanceIdFromHandle optixGetLinearCurveVertexData

optixGetInstanceTransformFromHandle optixGetQuadraticBSplineVertexData

optixGetInstanceInverseTransformFromHandle optixGetCubicBSplineVertexData

optixGetStaticTransformFromHandle optixGetCatmullRomVertexData

optixGetMatrixMotionTransformFromHandle optixGetCubicBezierVertexData

optixGetSRTMotionTransformFromHandle optixGetRibbonVertexData

optixGetGASMotionTimeBegin optixGetRibbonNormal

optixGetGASMotionTimeEnd optixGetSphereData

optixGetGASMotionStepCount optixGetInstanceTraversableFromIAS

optixGetGASPointerFromHandle optixGetLaunchIndex

optixGetPrimitiveType(hitKind) optixGetLaunchDimensions

optixIsFrontFaceHit(hitKind)

Other functions are available only in specific program types. The following tables identify the

program types within which the OptiX device functions are valid. The tables use these

abbreviations for the program types:

RG Ray generation

IS Intersection

AH Any hit

CH Closest hit

MS Miss

EX Exception

DC Direct callable

CC Continuation callable

Program types that are available for a function are printed in black; unavailable functions are

printed in red.

1. The abbreviation “GAS” is used for geometry acceleration structures in function names.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 117

12 Device-side functions

Note that all OptiX enabled functions support the same set of features as direct-callable

programs except for optixGetSbtDataPointer. See “Non-inlined functions” (page 140).

Function name RG IS AH CH MS EX CC DC

optixGetSbtDataPointer RG IS AH CH MS EX CC DC

optixThrowException

optixDirectCall
RG IS AH CH MS CC DC

optixTrace

optixTraverse

optixHitObjectIsHit

optixHitObjectIsMiss

optixHitObjectIsNop

optixHitObjectGetSbtRecordIndex

optixHitObjectGetWorldRayOrigin

optixHitObjectGetWorldRayDirection

optixHitObjectGetRayTmin

optixHitObjectGetRayTmax

optixHitObjectGetRayTime

optixHitObjectGetTransformListSize

optixHitObjectGetTransformListHandle

optixHitObjectGetPrimitiveIndex

optixHitObjectGetSbtGASIndex

optixHitObjectGetInstanceId

optixHitObjectGetInstanceIndex

optixHitObjectGetHitKind

optixHitObjectGetSbtDataPointer

optixHitObjectGetAttribute_0...7

RG CH MS CC DC

optixInvoke

optixMakeHitObject

optixMakeHitObjectWithRecord

optixMakeMissHitObject

optixMakeNopHitObject

optixContinuationCall

RG CH MS CC

optixSetPayloadTypes

optixGetWorldRayOrigin

optixGetWorldRayDirection

optixGetRayTmin

optixGetRayTmax

optixGetRayTime

optixGetRayFlags

optixGetRayVisibilityMask

optixSetPayload_0...31

optixGetPayload_0...31

IS AH CH MS

118 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12 Device-side functions

Function name RG IS AH CH MS EX CC DC

optixGetGASTraversableHandle

optixGetWorldToObjectTransformMatrix

optixGetObjectToWorldTransformMatrix

optixTransformPointFromWorldToObjectSpace

optixTransformVectorFromWorldToObjectSpace

optixTransformNormalFromWorldToObjectSpace

optixTransformPointFromObjectToWorldSpace

optixTransformVectorFromObjectToWorldSpace

optixTransformNormalFromObjectToWorldSpace

optixGetTransformListSize

optixGetTransformListHandle

optixGetPrimitiveIndex

optixGetSbtGASIndex

optixGetInstanceId

optixGetInstanceIndex

IS AH CH

optixGetObjectRayOrigin

optixGetObjectRayDirection
IS AH

optixGetHitKind

optixGetPrimitiveType

optixIsFrontFaceHit

optixIsBackFaceHit

optixIsTriangleHit

optixIsTriangleFrontFaceHit

optixIsTriangleBackFaceHit

optixIsDisplacedMicromeshTriangleHit

optixIsDisplacedMicromeshTriangleFrontFaceHit

optixIsDisplacedMicromeshTriangleBackFaceHit

optixGetTriangleBarycentrics

optixGetCurveParameter

optixGetRibbonParameters

optixGetAttribute_0...7

AH CH

optixReorder RG

optixReportIntersection IS

optixTerminateRay

optixIgnoreIntersection
AH

optixGetExceptionCode

optixGetExceptionLineInfo

optixGetExceptionDetail_0...7

EX

Any function in the module that calls an NVIDIA OptiX device-side function is inlined into

the caller (with the exceptions noted below). This process is repeated until only the outermost

function contains these function calls.

For example, consider a closest-hit program that calls a function called computeValue, which

calls computeDeeperValue, which itself calls optixGetTriangleBarycentrics. The inlining

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 119

12 Device-side functions 12.2 Trace

process inlines the body of computeDeeperValue into computeValue, which in turn, is

inlined into the closest-hit program. Recursive functions that call device-side API functions

will generate a compilation error.

The following functions do not trigger inlining:

optixTexFootprint2D

optixGetInstanceChildFromHandle

optixTexFootprint2DGrad

optixTexFootprint2DLod

12.1 Launch index

The launch index identifies the current thread, within the launch dimensions specified by

optixLaunch on the host. The launch index is available in all programs.

Listing 12.1

uint3 optixGetLaunchIndex();

Typically, the ray generation program is only launched once per launch index.

In contrast to the CUDA programming model, program execution of neighboring launch

indices is not necessarily done within the same warp or block, so the application must not

rely on the locality of launch indices.

12.2 Trace

The optixTrace function initiates a ray tracing query starting with the given traversable and

the provided ray origin and direction. If the given OptixTraversableHandle is null, only the

miss program is invoked.

The tmin and tmax arguments set the extent associated with the current ray. Any reported

hits with hitT outside of this range are ignored. The tmin value must be equal or greater than

zero. The optixTrace function’s behavior is undefined for negative tmin values.

An arbitrary payload is associated with each ray that is initialized with this call; the payload

is passed to all the intersection, any-hit, closest-hit and miss programs that are executed

during this invocation of trace. The payload can be read and written by each program using

the pairs of optixGetPayload and optixSetPayload functions (for example,

optixGetPayload_0 and optixSetPayload_0). The payload is subsequently passed back to

the caller of optixTrace and follows a copy-in/copy-out semantic. See “Payload” (page 135).

The rayTime argument sets the time allocated for motion-aware traversal and material

evaluation. If motion is not enabled in the pipeline compile options, the ray time is ignored

and removed by the compiler. To request the ray time, use the optixGetRayTime function. In

a pipeline without motion, optixGetRayTime always returns 0.

The rayFlags argument can represent a combination of OptixRayFlags. The following flags

are supported. Illegal combinations are noted.

120 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.2 Trace 12 Device-side functions

OPTIX_RAY_FLAG_NONE

No change from the behavior configured for the individual acceleration structure.

OPTIX_RAY_FLAG_DISABLE_ANYHIT

Disables any-hit programs for the ray. Overrides potential instance flag

OPTIX_INSTANCE_FLAG_ENFORCE_ANYHIT when intersecting instances. This flag is

mutually exclusive with OPTIX_RAY_FLAG_ENFORCE_ANYHIT,

OPTIX_RAY_FLAG_CULL_DISABLED_ANYHIT, OPTIX_RAY_FLAG_CULL_ENFORCED_ANYHIT.

OPTIX_RAY_FLAG_ENFORCE_ANYHIT

Forces any-hit program execution for the ray. Overrides

OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT and OPTIX_INSTANCE_FLAG_DISABLE_ANYHIT.

OPTIX_RAY_FLAG_TERMINATE_ON_FIRST_HIT

Terminates the ray after the first hit and executes the closest-hit program of that hit.

OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT

Disables closest-hit programs for the ray, but still executes the miss program in case of a

miss.

OPTIX_RAY_FLAG_CULL_BACK_FACING_TRIANGLES

Prevents intersection of triangle back faces (respects a possible face change due to

instance flag OPTIX_INSTANCE_FLAG_FLIP_TRIANGLE_FACING). This flag is mutually

exclusive with OPTIX_RAY_FLAG_CULL_FRONT_FACING_TRIANGLES.

OPTIX_RAY_FLAG_CULL_FRONT_FACING_TRIANGLES

Prevents intersection of triangle front faces (respects a possible face change due to

instance flag OPTIX_INSTANCE_FLAG_FLIP_TRIANGLE_FACING). This flag is mutually

exclusive with OPTIX_RAY_FLAG_CULL_BACK_FACING_TRIANGLES.

OPTIX_RAY_FLAG_CULL_DISABLED_ANYHIT

Prevents intersection of geometry which disables any-hit programs (due to setting

geometry flag OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT or instance flag

OPTIX_INSTANCE_FLAG_DISABLE_ANYHIT). This flag is mutually exclusive with

OPTIX_RAY_FLAG_CULL_ENFORCED_ANYHIT, OPTIX_RAY_FLAG_ENFORCE_ANYHIT,

OPTIX_RAY_FLAG_DISABLE_ANYHIT.

OPTIX_RAY_FLAG_CULL_ENFORCED_ANYHIT

Prevents intersection of geometry which have an enabled any-hit program (due to not

setting geometry flag OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT or setting instance flag

OPTIX_INSTANCE_FLAG_ENFORCE_ANYHIT). This flag is mutually exclusive with

OPTIX_RAY_FLAG_CULL_DISABLED_ANYHIT, OPTIX_RAY_FLAG_ENFORCE_ANYHIT,

OPTIX_RAY_FLAG_DISABLE_ANYHIT.

Ray flags modify traversal behavior. For example, setting ray flag

OPTIX_RAY_FLAG_TERMINATE_ON_FIRST_HIT causes the very first hit (that is not ignored in

any-hit) to abort further traversal, defining it as the closest hit. This particular flag can be

useful for shadow rays to allow for the early termination of a traversal without the need for a

special any-hit program that calls optixTerminateRay.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 121

12 Device-side functions 12.3 Payload access

The visibility mask controls intersection against configurable masks of instances. (See

“Instance build inputs” (page 27).) Intersections are computed if there is at least one matching

bit in both masks. The same limit applies in the number of available bits as for the instance

visibility mask. See “Limits” (page 115).

The SBT offset and stride adjust the SBT indexing when selecting the SBT record for a ray

intersection. Like the visibility mask, both parameters are limited. See “Limits” (page 115)

and “Acceleration structures” (page 81).

The specified miss SBT index is used to identify the program that is invoked on a miss. (See

“Layout” (page 80).) The argument must be a valid index for a SBT record for a miss program.

Listing 12.2

__device__ void optixTrace(OptixTraversableHandle handle,

float3 rayOrigin,

float3 rayDirection,

float tmin,

float tmax,

float rayTime,

OptixVisibilityMask visibilityMask,

unsigned int rayFlags,

unsigned int SBToffset,

unsigned int SBTstride,

unsigned int missSBTIndex,

unsigned int& p0,
...

unsigned int& p7);

12.3 Payload access

In intersection, any-hit, closest-hit, and miss programs, the payload is used to communicate

values from the optixTrace that initiates the traversal, to and from other programs in the

traversal, and back to the caller of optixTrace. There are up to thirty-two 32-bit payload

values available. Getting and setting the thirty-two payload values use functions whose

names end with a payload index. For example, payload 0 is set and accessed by these two

functions:

Listing 12.3

__device__ void optixSetPayload_0(unsigned int p);

__device__ unsigned int optixGetPayload_0();

If the user configured payload types with the

OptixModuleCompileOptions::numPayloadTypes and

OptixModuleCompileOptions::payloadTypes compile options, the optixSetPayloadTypes

function associates a program with particular payload types. When used, this function must

be called unconditionally at the top of the program. See “Payload” (page 135).

122 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.4 Reporting intersections and attribute access 12 Device-side functions

Listing 12.4

__device__ void optixSetPayloadTypes(unsigned int typeMask);

12.4 Reporting intersections and attribute access

To report an intersection with the current traversable, the intersection program can use the

optixReportIntersection function. The hitKind of the given intersection is communicated

to the associated any-hit and closest-hit program and allows the any-hit and closest-hit

programs to customize how the attributes should be interpreted. The lowest 7 bits of the

hitKind are interpreted; values [128, 255] are reserved for internal use.

Up to eight 32-bit primitive attribute values are available. Intersection programs write the

attributes when reporting an intersection using optixReportIntersection. Then closest-hit

and any-hit programs are able to read these attributes. For example:

Listing 12.5

__device__ bool optixReportIntersection(

float hitT,

unsigned int hitKind,

unsigned int a0, ... , unsigned int a7);

__device__ unsigned int optixGetAttribute_0();

To reject a reported intersection in an any-hit program, an application calls

optixIgnoreIntersection. The closest-hit program is called for the closest accepted

intersection with the attributes reported for that intersection. An any-hit program may not be

called for all possible hits along the ray. When an intersection is accepted (not discarded by

optixIgnoreIntersection), the interval for intersection and traversal is updated. Further

intersections outside the new interval are not performed.

Although the type of the attributes is exclusively integer data, it is expected that users will

wrap one or more of these data types into more readable data structures using

__int_as_float and __float_as_int, or other data types where necessary.

Triangle intersections return two attributes, the barycentric coordinates (u,v) of the hit, which

may be read with the convenience function optixGetTriangleBarycentrics. Analoguously,

ribbon primitive intersections return two attributes, the coordinates (u,v) of the hit with the

ribbon segment, which may be read by optixGetRibbonParameters. Other curve primitive

intersections return one attribute, the curve parameter (u) within the polynomial curve

segment, which may be read with the convenience function optixGetCurveParameter.

Sphere intersections return one attribute, the ray parameter of the second intersection, or 0 if

it doesn’t exist.

No more than eight values can be used for attributes. Unlike the ray payload that can contain

pointers to local memory, attributes should not contain pointers to local memory. This

memory may not be available in the closest-hit or intersection programs when the attributes

are consumed. More sophisticated attributes are probably better handled in the closest-hit

program. There are generally better memory bandwidth savings by deferring certain

calculations to the closest-hit program or reloading values once in the closest-hit program.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 123

12 Device-side functions 12.6 Unde�ned values

12.5 Ray information

To query the properties of the currently active ray, use the following functions:

optixGetWorldRayOrigin / optixGetWorldRayDirection

Returns the ray’s origin and direction passed into optixTrace. It may be more expensive

to call these functions during traversal (that is, in intersection or any-hit) than their object

space counterparts.

optixGetObjectRayOrigin / optixGetObjectRayDirection

Returns the object space ray direction or origin based based on the current transformation

stack. These functions are only available in intersection and any-hit programs.

optixGetRayTmin

Returns the minimum extent associated with the current ray. This is the tmin value

passed into optixTrace.

optixGetRayTmax

Returns the maximum extent associated with the current ray. Note the following:

• In intersection and closest-hit programs, this is the smallest reported hitT or if no

intersection has been recorded yet the tmax that was passed into optixTrace.

• In any-hit programs, this returns the hitT value as passed into

optixReportIntersection.

• In miss programs, the return value is the tmax that was passed into optixTrace.

optixGetRayTime

Returns the time value passed into optixTrace. Returns 0 if motion is disabled in the

pipeline.

optixGetRayFlags

Returns the ray flags passed into optixTrace.

optixGetRayVisibilityMask

Returns the visibility mask passed into optixTrace.

Note: In ray-generation and exception programs, these functions are not supported

because there is no currently active ray.

12.6 Unde�ned values

Advanced application writers seeking more fine-grained control over register usage may

want to reduce total register use in heavy intersect and any-hit programs by writing an

unknown value to payload slots not used during traversal. NVIDIA OptiX provides the

following function to make this straightforward:

Listing 12.6

__device__ unsigned int optixUndefinedValue();

124 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.7 Intersection information 12 Device-side functions

12.7 Intersection information

The primitive index of the current intersection point can be queried using

optixGetPrimitiveIndex. The primitive index is local to its build input.

The SBT index of the current intersection point can be queried using optixGetSbtGASIndex.

The SBT index is local to its build input. (See “Shader binding table” (page 79).)

The application can query the 8-bit hit kind by using optixGetHitKind. The hit kind is

analyzed by calling optixGetPrimitiveType, which tells whether a custom primitive,

built-in triangle, built-in sphere, or built-in curve primitive was hit, as well as whether the

curve was linear, quadratic or cubic B-spline, a cubic Bézier, or a Catmull-Rom spline. For

built-in primitives, optixIsFrontFaceHit and optixIsBackFaceHit tell whether the ray hit

a front or back face of the primitive. The front face of a built-in triangle primitive is defined

by the counter-clockwise winding of the vertices. For custom primitives, the hit kind is the

value reported by optixReportIntersection when it was called in the intersection.

The default counter-clockwise winding that defines the front face can be changed to

clockwise winding by setting the OPTIX_INSTANCE_FLAG_FLIP_TRIANGLE_FACING instance

flag. The value of this flag in an instance overrides the flag’s value that may have been set

during the traversal of the acceleration structures of parent instances. (For a description of

instance flags, see “Instance build inputs” (page 27).)

Note: It is generally more efficient to have one hit shader handle multiple primitive

types (by switching on the value of optixGetPrimitiveType), rather than have several

hit shaders that implement the same ray behavior but differ only in the type of geometry

they expect.

For triangle hits, there are several notational shortcuts. The hit kind is either

OPTIX_HIT_KIND_TRIANGLE_FRONT_FACE or OPTIX_HIT_KIND_TRIANGLE_BACK_FACE,

depending on whether the ray came from the front or back of the triangle.

The device functions optixIsTriangleHit, optixIsTriangleFrontFaceHit, and

optixIsTriangleBackFaceHit may also be used.

The functions optixGetPrimitiveType, optixIsFrontFaceHit, and optixIsBackFaceHit

each have two forms. Without an argument, they analyze the current ray intersection; this

form can only be used in a closest-hit or any-hit program. Or, an explicit hit kind argument

may be used; this form can be called from any type of program.

When traversing a scene with instances, that is, a scene containing instance acceleration

structure objects, two properties of the most recently visited instance can be queried in

intersection and any-hit programs. In the case of closest-hit programs, the properties

reference the instance most recently visited when the hit was recorded with

optixReportIntersection. Using optixGetInstanceId the value supplied to the

OptixInstance::instanceId can be retrieved. Using optixGetInstanceIndex the

zero-based index within the instance acceleration structure’s instances associated with the

instance is returned. If no instance has been visited between the geometry primitive and the

target for optixTrace, optixGetInstanceId returns ˜0u (the bitwise complement of a

unsigned int zero) and optixGetInstanceIndex returns an unsigned int zero.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 125

12 Device-side functions 12.9 Vertex random access

12.8 SBT record data

The data section of the current SBT record can be accessed using optixGetSbtDataPointer.

It returns a pointer to the data, omitting the header of the SBT record (see “Shader binding

table” (page 79)).

12.9 Vertex random access

Triangle vertices are baked into the triangle data structure of the geometry acceleration

structure. When a triangle geometry acceleration structure is built with the

OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS flag set, the application can query in

object space the triangle vertex data of any triangle in the geometry acceleration structure.

Because the geometry acceleration structure contains the triangle data, the application can

safely release its own triangle data buffers on the device, thereby lowering overall memory

usage.

The function optixGetTriangleVertexData returns the three triangle vertices at the

rayTime passed in. Motion interpolation is performed if motion is enabled on the geometry

acceleration structure and pipeline.

Listing 12.7

void optixGetTriangleVertexData(

OptixTraversableHandle gas,

unsigned int primIdx,

unsigned int sbtGasIdx,

float rayTime,

float3 data[3]);

The user can call functions optixGetGASTraversableHandle, optixGetPrimitiveIndex,

optixGetSbtGASIndex and optixGetRayTime to obtain the geometry acceleration structure

traversable handle, primitive index, geometry acceleration structure local SBT index and

motion time associated with an intersection in the closest-hit and any-hit programs. The

function optixGetTriangleVertexData also performs motion vertex interpolation for

triangle position data.

For example:

Listing 12.8

OptixTraversableHandle gas = optixGetGASTraversableHandle();

unsigned int primIdx = optixGetPrimitiveIndex();

unsigned int sbtIdx = optixGetSbtGASIndex();

float time = optixGetRayTime();

float3 data[3];

optixGetTriangleVertexData(gas, primIdx, sbtIdx, time, data);

126 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.9 Vertex random access 12 Device-side functions

NVIDIA OptiX may remove degenerate (unintersectable) triangles from the acceleration

structure during construction. Calling optixGetTriangleVertexData on a degenerate

triangle returns NaN as triangle data, not the original triangle vertices.

The potential decompression step of triangle data may come with significant runtime

overhead. Enabling random access may cause the geometry acceleration structure to use

slightly more memory.

Care has to be taken if optixGetTriangleVertexData is used with a primitive index other

than the value returned by optixGetPrimitiveIndex. optixGetTriangleVertexData

expects a local primitive index corresponding to the build input / sbtGASIndex plus the

primitive index offset as specified in the build input at the acceleration structure build.

Curve primitive vertices and radii are also stored in the geometry acceleration structure, and

may be retrieved in an analogous way using the functions

optixGetLinearCurveVertexData, optixGetQuadraticBSplineVertexData,

optixGetCubicBSplineVertexData, optixGetCatmullRomVertexData,

optixGetCubicBezierVertexData or optixGetRibbonVertexData, depending on the type

of curve. The convenience function optixGetRibbonNormal returns the ribbon normal at a

specified (u,v).

Sphere vertices and radii can be retrieved by using the function optixGetSphereData.

These functions’ behavior is undefined when the traversable handle doesn’t reference a valid

geometry acceleration structure traversable, the geometry acceleration structure wasn’t built

with the OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS flag set, or the primitive index

or geometry acceleration structure local SBT index are not within the valid range.

12.9.1 Displaced micro-mesh triangle vertices

If a displaced micro-mesh triangle primitive is hit, the application can query the micro

vertices of the intersected micro triangle using function

optixGetMicroTriangleVertexData. This is similar to optixGetTriangleVertexData, but

must only be used for a current displaced micro-mesh triangle primitive hit in a closest-hit or

any-hit program.

Fig. 12.1 - A displaced micro-mesh triangle hit returns
the barycentrics in the space of the base triangle.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 127

12 Device-side functions 12.10 Geometry acceleration structure motion options

In such a case, optixGetTriangleBarycentrics returns the barycentrics of the hit point in

the space of the base triangle, not the micro triangle as shown in Figure 12.1 (page 127) (also

see Displaced micro-mesh triangle primitive section for the terminology of base and micro

triangles). This allows for easy interpolation of custom vertex attributes that are specified at

the vertices of the base triangle of a displaced micro-mesh triangle primitive. Function

optixGetMicroTriangleBarycentricsData can be used to query the barycentrics in base

triangle space of the three micro vertices of the intersected micro triangle. The helper function

optixBaseBarycentricsToMicroBarycentrics can be used to convert the barycentrics of

the current hit from base triangle space to the micro triangle space. This can be used to

interpolate the positions of the micro vertices to compute a hit position in object space.

Listing 12.9

float3 vertices[3];

optixGetMicroTriangleVertexData(vertices);
Returns the vertices of the
current DMMmicro triangle hit

float2 hitBaseBarycentrics = optixGetTriangleBarycentrics();

float2 microVertexBaseBarycentrics[3];

optixGetMicroTriangleBarycentricsData(microVertexBaseBarycentrics);

float2 microBary = optixBaseBarycentricsToMicroBarycentrics(

hitBaseBarycentrics, microVertexBaseBarycentrics);

float3 hitP = (1 - microBary.x - microBary.y) * vertices[0]

+ microBary.x * vertices[1] + microBary.y * vertices[2];

12.10 Geometry acceleration structure motion options

In addition to the motion vertex interpolation performed by optixGetTriangleVertexData,

interpolation may also be desired for other user-managed vertex data, such as interpolating

vertices in a custom motion intersection, or interpolating user-provided shading normals in

the closest-hit shader. NVIDIA OptiX provides the following functions to obtain the motion

options for a geometry acceleration structure:

optixGetGASMotionTimeBegin

optixGetGASMotionTimeEnd

optixGetGASMotionStepCount

For example, if the number of motion keys for the user vertex data equals the number of

motion keys in the geometry acceleration structure, the user can compute the left key index

and intra-key interpolation time as follows:

Listing 12.10

OptixTraversableHandle gas = optixGetGASTraversableHandle();

float currentTime = optixGetRayTime();

float timeBegin = optixGetGASMotionTimeBegin(gas);

128 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.11 Transform list 12 Device-side functions

float timeEnd = optixGetGASMotionTimeEnd(gas);

int numIntervals = optixGetGASMotionStepCount(gas) - 1;

float time =

(globalt - timeBegin) * numIntervals / (timeEnd - timeBegin);

time = max(0.f, min(numIntervals, time));

float fltKey = floorf(time);

float intraKeyTime = time - fltKey;

int leftKey = (int)fltKey;

12.11 Transform list

In a multi-level/IAS scene graph, one or more transformations are applied to each primitive.

NVIDIA OptiX provides intrinsics to read a transform list at the current primitive. The

transform list contains all transforms on the path through the scene graph from the root

traversable (passed to optixTrace) to the current primitive. Function

optixGetTransformListSize returns the number of entries in the transform list and

optixGetTransformListHandle returns the traversable handle of the transform entries.

Function optixGetTransformTypeFromHandle returns the type of a traversable handle and

can be of one of the following types:

OPTIX_TRANSFORM_TYPE_INSTANCE

An instance in an instance acceleration structure. Function

optixGetInstanceIdFromHandle returns the user-supplied instance ID. Functions

optixGetInstanceTransformFromHandle and

optixGetInstanceInverseTransformFromHandle return the instance transform and its

inverse. Function optixGetInstanceChildFromHandle returns the traversable handle

referenced by the instance via OptixInstance::traversableHandle.

OPTIX_TRANSFORM_TYPE_STATIC_TRANSFORM

A transform corresponding to the OptixStaticTransform traversable. Function

optixGetStaticTransformFromHandle returns a pointer to the traversable.

OPTIX_TRANSFORM_TYPE_MATRIX_MOTION_TRANSFORM

A transform corresponding to the OptixMatrixMotionTransform traversable. Function

optixGetMatrixMotionTransformFromHandle returns a pointer to the traversable.

OPTIX_TRANSFORM_TYPE_SRT_MOTION_TRANSFORM

A transform corresponding to the OptixSRTMotionTransform traversable. Function

optixGetSRTMotionTransformFromHandle returns a pointer to the traversable.

Only use these pointers to read data associated with these nodes. Writing data to any

traversables that are active during a launch produces undefined results.

For example (note this can be called directly with optixGetWorldToObjectTransformMatrix

found in optix_device.h):

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 129

12 Device-side functions 12.11 Transform list

Listing 12.11 – Generic world to object transform computation

float4 mtrx[3];

for(unsigned int i = 0; i < optixGetTransformListSize(); ++i) {

OptixTraversableHandle handle = optixGetTransformListHandle(i);

float4 trf[3];

switch(optixGetTransformTypeFromHandle(handle)) {

case OPTIX_TRANSFORM_TYPE_INSTANCE: {

const float4* trns =

optixGetInstanceInverseTransformFromHandle(handle);

trf[0] = trns[0];

trf[1] = trns[1];

trf[2] = trns[2];

} break;

case OPTIX_TRANSFORM_TYPE_STATIC_TRANSFORM : {

const OptixStaticTransform* traversable =

optixGetStaticTransformFromHandle(handle);
... Compute trf

} break;

case OPTIX_TRANSFORM_TYPE_MATRIX_MOTION_TRANSFORM : {

const OptixMatrixMotionTransform* traversable =

optixGetMatrixMotionTransformFromHandle(handle);
... Compute trf

} break;

case OPTIX_TRANSFORM_TYPE_SRT_MOTION_TRANSFORM : {

const OptixSRTMotionTransform* traversable =

optixGetSRTMotionTransformFromHandle(handle);
... Compute trf

} break;

default:

continue;

}

if(i == 0) {

mtrx[0] = trf[0];

mtrx[1] = trf[1];

mtrx[2] = trf[2];

} else {

float4 m0 = mtrx[0], m1 = mtrx[1], m2 = mtrx[2];

mtrx[0] = rowMatrixMul(m0, m1, m2, trf[0]);

mtrx[1] = rowMatrixMul(m0, m1, m2, trf[1]);

mtrx[2] = rowMatrixMul(m0, m1, m2, trf[2]);

Right multiply rows
with pre-multiplied
matrix

}

}

An application can implement a customized transformation evaluation function (for example,

to get the world-to-object transformation matrix) using these intrinsics. Doing so can be

beneficial as one can take advantage of the particular structure of the scene graph, for

130 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.12 Instance random access 12 Device-side functions

example, when a scene graph features a known maximum of transforms and only a subset of

transform types are used. However, it is more important to properly specify the

OptixPipelineCompileOptions::traversableGraphFlags and

OptixPipelineCompileOptions::usesMotionBlur compile options based on which subset

of scene graphs need to be supported. These compile options allow for optimizations to the

intrinsics by compile-time removal of non-supported cases. For example, if only one level of

instancing is necessary and no motion blur transforms need to be supported, set

traversableGraphFlags to

OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_LEVEL_INSTANCING. If set, device

functions such as optixGetWorldToObjectTransformMatrix and

optixGetObjectToWorldTransformMatrix are equally performant as a custom

implementation.

Handles passed back from optixGetTransformListHandle can be stored or passed to other

functions in which they can be decoded. Functions

optixGetWorldToObjectTransformMatrix and optixGetObjectToWorldTransformMatrix

are only available in the context of an intersection (IS, AH, CH programs). As such, it may

also be required to use a customized transformation evaluation function, fetching the

transformations from previously stored handles.

12.12 Instance random access

Transform lists are the preferred way to access data of an NVIDIA OptiX instance associated

with the current intersection in intersection, any-hit and closest-hit programs. However, a

user may require random access to instance data of any other instance in the instance

acceleration structure, not associated with the current intersection. When an instance

acceleration structure is built with the OPTIX_BUILD_FLAG_ALLOW_RANDOM_INSTANCE_ACCESS

flag set, the application can query the instance traversable handle of any instance in the

instance acceleration structure. Because the instance acceleration structure contains the

instance data, the application can safely release its own instance data buffers on the device,

thereby lowering overall memory usage.

The function optixGetInstanceTraversableFromIAS returns the traversable handle of an

instance in the instance acceleration structure.

Listing 12.12

OptixTraversableHandle optixGetInstanceTraversableFromIAS(

OptixTraversableHandle ias,

unsigned int instIdx);

The user can call functions optixGetInstanceIdFromHandle,

optixGetInstanceChildFromHandle, optixGetInstanceTransformFromHandle and

optixGetInstanceInverseTransformFromHandle to obtain the user instance id, child

traversable handle, object-to-world transform and world-to-object transform from the

instance traversable handle.

For example:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 131

12 Device-side functions 12.14 Exceptions

Listing 12.13

OptixTraversableHandle instanceHandle =

optixGetInstanceTraversableFromIAS(iasHandle, instanceIdx);

const float4* transform =

optixGetInstanceTransformFromHandle(instanceHandle);

This functions’ behavior is undefined when the traversable handle doesn’t reference a valid

instance acceleration structure traversable, the instance acceleration structure wasn’t built

with the OPTIX_BUILD_FLAG_ALLOW_RANDOM_INSTANCE_ACCESS flag set or the instance index

is not within the valid range.

12.13 Terminating or ignoring traversal

In any-hit programs, use the following functions to control traversal:

optixTerminateRay

Causes the traversal execution associated with the current ray to immediately terminate.

After termination, the closest-hit program associated with the ray is called.

optixIgnoreIntersection

Causes the current potential intersection to be discarded. This intersection will not

become the new closest-hit intersection associated with the ray.

These functions do not return to the caller and they immediately terminate the program. Any

modifications to ray payload values must be set before calling these functions.

12.14 Exceptions

Exceptions allow NVIDIA OptiX to check for invariants and to report details about violations.

To enable exception checks, set the OptixPipelineCompileOptions::exceptionFlags field

with a bitwise combination of OptixExceptionFlags. Depending on the scenario and

combination of flags, enabling exceptions can lead to severe overhead, so some flags should

be mainly used in internal and debug builds.

There are several different kinds of exceptions, which are enabled based on the set of flags

specified:

OPTIX_EXCEPTION_FLAG_NONE

No exception set (default).

OPTIX_EXCEPTION_FLAG_STACK_OVERFLOW

Checks for overflow in the continuation stack specified with the

continuationStackSize parameter to optixPipelineSetStackSize. When this

exception is enabled, the overhead is usually negligible.

OPTIX_EXCEPTION_FLAG_TRACE_DEPTH

Before tracing a new ray, checks to see if the ray depth exceeds the value specified with

OptixPipelineLinkOptions::maxTraceDepth. Some stack overflows are only detected

if the exception for trace depth is enabled as well (or the value of

132 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

12.14 Exceptions 12 Device-side functions

OptixPipelineLinkOptions::maxTraceDepth is correct). When this exception is

enabled, the overhead is usually negligible.

OPTIX_EXCEPTION_FLAG_USER

Enables the use of optixThrowException().

If an exception occurs, the exception program is invoked. The exception program can be

specified with an SBT record set in OptixShaderBindingTable::exceptionRecord. If

exception flags are specified but no exception program is provided, a default exception

program is provided by NVIDIA OptiX. This built-in exception program prints the first five

exceptions that occurred to stdout to limit the amount of exception printing. Control does

not return to the location that triggered the exception, and execution of the launch index ends.

In exception programs, the kind of exception that occurred can be queried with

optixGetExceptionCode. OptiX defines two exception codes:

OPTIX_EXCEPTION_CODE_STACK_OVERFLOW

Stack overflow of the continuation stack. No information functions.

OPTIX_EXCEPTION_CODE_TRACE_DEPTH_EXCEEDED

The trace depth was exceeded. No information functions.

User exceptions can be thrown with values between 0 and 230 − 1. Zero to eight 32-bit-value

details can also be used to pass information to the exception program using a set of functions

of one to nine arguments, as shown in Listing 12.14.

Listing 12.14 – Function signatures for user exceptions

optixThrowException(

unsigned int code);

optixThrowException(

unsigned int code,

unsigned int detail0);

optixThrowException(

unsigned int code,

unsigned int detail0,

unsigned int detail1);

... Exceptions for three to seven detail arguments

optixThrowException(

unsigned int code,

unsigned int detail0,

unsigned int detail1,

unsigned int detail2,

unsigned int detail3,

unsigned int detail4,

unsigned int detail5,

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 133

12 Device-side functions 12.14 Exceptions

unsigned int detail6,

unsigned int detail7);

The details can be queried in the exception program with eight functions,

optixGetExceptionDetail_0() to optixGetExceptionDetail_7().

These functions’ behavior is undefined when exception detail for another exception code is

queried or if user exception detail that is queried was not set with optixThrowException.

134 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

13 Payload

The ray payload is used to pass data between optixTrace and the programs invoked during

ray traversal. Payload values are passed to and returned from optixTrace, and follow a

copy-in/copy-out semantic. The payload is passed to all the intersection, any-hit, closest-hit

and miss programs that are invoked during the execution of optixTrace. The payload can be

read and written by each program using the thirty-two pairs of optixGetPayload and

optixSetPayload functions (for example, optixGetPayload_0 and optixSetPayload_0).

Setting a payload value using optixSetPayload causes the updated value to be visible in any

subsequent optixGetPayload calls until the return to the caller of optixTrace. Payload

values that are not explicitly set in a program remain unmodified. Payload values can be set

anywhere in a program. Payloads are limited in size and are encoded in a maximum of

thirty-two 32-bit integer values, which are held in registers where possible. To hold additional

state, these values may also encode pointers to stack-based variables or application-managed

global memory.

The number of available payload values can be configured globally for the entire pipeline

using the numPayloadValues field of OptixPipelineCompileOptions. When configured

globally per pipeline, all intersection, any-hit, closest-hit and miss programs agree on the

number of values in the payload and have read and write access to all payload values. The

lifetime of all payload values therefore extends over the entire optixTrace call. Configuring

a larger payload will thus generally increase register consumption.

Alternatively, the user can specify more fine-grained payload type semantics per program.

Each payload type is defined as some number of 32-bit integer values, with specific

read/write semantics for each value. These semantics declare which programs may read

and/or write to a particular payload value. OptiX can use these semantics to limit the lifetime

of payload values and possibly improve register consumption. Each optixTrace call is

associated with a single payload type. Similarly, each intersection, any-hit, closest-hit and

miss program is associated with one or more payload types. Up to eight payload types can be

specified per module using the OptixModuleCompileOptions as follows:

Listing 13.1

unsigned int semantics[2] = {

OPTIX_PAYLOAD_SEMANTICS_TRACE_CALLER_WRITE

| OPTIX_PAYLOAD_SEMANTICS_CH_READ,

OPTIX_PAYLOAD_SEMANTICS_TRACE_CALLER_READ

| OPTIX_PAYLOAD_SEMANTICS_CH_WRITE,

};

OptixPayloadType payloadType;

payloadType.numPayloadValues = 2;

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 135

13 Payload

payloadType.payloadSemantics = semantics;

OptixModuleCompileOptions moduleCompileOptions = {};
... Option assignment

moduleCompileOptions.numPayloadTypes = 1;

moduleCompileOptions.payloadTypes = &payloadType;

OptixPipelineCompileOptions pipelineCompileOptions = {};
... Option assignment

pipelineCompileOptions.numPayloadValues = 0;

Note: Shader output payload values that are exclusively written in closest-hit and/or

miss shaders and read by the caller generally have the shortest lifetime

(OPTIX_PAYLOAD_SEMANTICS_TRACE_CALLER_READ |

OPTIX_PAYLOAD_SEMANTICS_CH_WRITE | OPTIX_PAYLOAD_SEMANTICS_MS_WRITE), thus

providing OptiX with the most optimization potential.

Setting the OptixPipelineCompileOptions::numPayloadValues to zero signals that the

modules in a pipeline use payload types. Modules compiled with different payload types

may be freely combined in a pipeline. While the maximum number of payload types per

module is eight, the pipeline itself can exceed this limit due to the ability to link modules with

disjoint payload types. Within a module the payload types are referenced by ID, where the ID

of a type equals its index in the payload type array payloadTypes specified in

OptixModuleCompileOptions. Each program in a module specifies one or more supported

payload types using the optixSetPayloadTypes function. When called, this function must

be invoked unconditionally at the top of the program. Omitting the call to

optixSetPayloadTypes or with OPTIX_PAYLOAD_TYPE_DEFAULT as argument indicates that

the program supports all payload types specified in OptixModuleCompileOptions. If the

OptixModuleCompileOptions specify multiple payload types each optixTrace call must

supply a single payload type. All programs invoked during the execution of an optixTrace

call must be associated with the payload type passed to that optixTrace. It is the

responsibility of the user to setup the Shader Binding Table so the payload type of any

programs invoked in a trace execution match the type associated with the optixTrace call.

See “Shader binding table” (page 79). Type mismatches result in undefined behavior. When

validation mode is enabled on the context, NVIDIA OptiX will verify program payload types

and report any detected mismatches. The payload types argument passed to optixTrace and

optixSetPayloadTypes must be a compile time constant. Note that a user may assign

matching payload types to different IDs in different modules. Payload types are considered to

match if they agree on the number of payload values and the semantics of each value,

irrespective of their IDs within a module.

Listing 13.2

extern "C" __global__ void __anyhit__ah()

{

136 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

13 Payload

optixSetPayloadTypes(

OPTIX_PAYLOAD_TYPE_ID_1 |

OPTIX_PAYLOAD_TYPE_ID_

3);

Support only types 1 and 3 speci�ed in
OptixModuleCompileOptions:

}

extern "C" __global__ void __intersection__default()

{

optixSetPayloadTypes(

OPTIX_PAYLOAD_TYPE_DEFAULT);
Support all types speci�ed in
OptixModuleCompileOptions:

}

extern "C" __global__ void __raygen__rg()

{

unsigned int p0, p1;

optixTrace(

OPTIX_PAYLOAD_TYPE_ID_0, ..., p0, p1);

All IS, AH, CH and MS programs
associated with this call need
to be associated with payload
type 0.

}

Note that reading or writing a payload value inside a program without the appropriate read

or write semantics for that value will result in a compilation failure. Programs associated with

multiple types will be compiled once for each type. Programs in a program group are

associated with a single specific type only. The user configures the target type with

OptixProgramGroupOptions::payloadType. If there is only one unique payload type that is

supported by all programs specified in the group description OptiX will deduce the unique

type and OptixProgramGroupOptions::payloadType may be left zero.

Listing 13.3

OptixProgramGroupDesc desc = {};

desc.kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;

desc.hitgroup.moduleCH = moduleA;

desc.hitgroup.entryFunctionNameCH = "__closesthit__ch"

desc.hitgroup.moduleAH = moduleB;

desc.hitgroup.entryFunctionNameAH = "__anyhit__ah"

OptixProgramGroupOptions options = {};

options.payloadType = &payloadTypes[1];
The payloadType can be de�ned
explicitly...

options.payloadType = nullptr; ...or let OptiX try to �nd a unique type match:

optixProgramGroupCreate(

..., &desc, 1, options, ..., &programGroup);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 137

13 Payload

138 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

14 Callables

14.1 Callable programs

Callable programs allow for additional programmability within the standard set of NVIDIA

OptiX programs. They are invoked using their index in the shader binding table. Invoking a

function with its index enables a function call to change its target at runtime without having

to recompile the program. This increase in flexibility can enable, for example, different

shading effects in response to user input or programs that can be customized based on the

scene setup.

Two types of callable programs exist in NVIDIA OptiX: direct callables and continuation

callables. Tracing rays are supported in both types of callable programs, though the two differ

in their capabilities. Like a closest-hit program, a continuation callable program can call

optixTrace with full recursive tracing from subsequent shading programs. A direct callable

program can also call optixTrace, but subsequent recursive calls are not supported.

For direct callable applications that need to trace a ray (for example, to query the visibility of

a light source), calling optixTraverse should be preferred over calling optixTrace. Unlike

optixTrace, optixTraverse does not call shading, thereby providing a more efficient

mechanism to determine ray intersection alone. (See the description of optixTraverse

(page ??) for more information.)

Another difference between direct and continuation callables is their method of invocation.

Direct callables are called immediately, whereas continuation callables need to be executed by

the scheduler to support recursive rays with optixTrace. This support of recursion may

result in additional overhead when using continuation callables.

Since continuation-callable programs can only be called from other continuation-callable

programs, nested callables that need to call optixTrace must be marked as continuation

callables. This has implications when creating a shader network from callables that trace rays.

In such cases, refactoring the shader network to avoid calling optixTrace is recommended to

improve overall performance.

The use of continuation callables can also lead to better overall performance, especially if the

code block in question is part of divergent code execution. A simple example is a variety of

material parameter inputs, such as different noise functions or a complex bitmap network.

Using a continuation callable for each of these inputs allows the scheduler to more efficiently

execute these complex snippets and to potentially resolve most of the divergent code

execution.

Direct callables can be called from any program type except exception. Continuation callables

can be called from ray-generation, closest-hit, and miss programs.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 139

14 Callables 14.3 Non-inlined functions

14.2 Implementing a callable program

Three steps are required to implement a callable program:

1. Implement the program you wish to call. That program needs to be annotated with the

appropriate name prefix, either __direct_callable__ or

__continuation_callable__.

2. Include a shader binding table record for the program group that contains the callable

program. The program group for a callable can contain both types of callables, though

both types share a single record in the shader binding table.

3. Invoke the callable in a program using the functions optixDirectCall or

optixContinuationCall, shown in Listing 14.1. (The device-code compilation of these

variadic templates requires C++11 or later.)

Listing 14.1 – Functions that can invoke callable programs

template<typename ReturnT, typename... ArgTypes>

ReturnT optixDirectCall(unsigned int sbtIndex, ArgTypes... args);

template<typename ReturnT, typename... ArgTypes>

ReturnT optixContinuationCall(unsigned int sbtIndex, ArgTypes... args);

The sbtIndex argument is an index of the array of callable shader binding table entries

specified with the OptixShaderBindingTable::callablesRecordBase parameter to

optixTrace.

14.3 Non-inlined functions

While the shortest execution time is often achieved by aggressively inlining functions,

inlining can lengthen compilation time. OptiX supports the use of non-inlined functions that

can be referenced by name and participate in cross-module linking. However, non-inlined

functions cannot use OptiX device-side API functions without being automatically inlined

during module creation.

To disable this automatic inlining, define the function as OptiX enabled by adding the prefix

__optix_enabled__ to the function name. Since OptiX-enabled functions do not have entries

in the shader binding table, they do not have any associated data. They can be called from

other OptiX-enabled functions and any entry function except for within exception programs.

As with all functions, taking the address of the function is not permitted. If function pointer

semantics are required, direct callable functions should be used.

OptiX-enabled functions may incur some compile and runtime overhead similar to direct

callables. See the table in “Device-side functions” (page 117) for a list of OptiX device-side

API functions that are callable from OptiX-enabled functions.

140 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15 NVIDIA AI Denoiser

Image areas that have not yet fully converged during rendering will often exhibit pixel-scale

noise due to the insufficient amount of information gathered by the renderer. This grainy

appearance in an image may be caused by low iteration counts, especially in scenes with

complex lighting environments and material calculations.

The NVIDIA AI Denoiser can estimate the converged image from a partially converged

image. Instead of improving image quality through a larger number of path tracing iterations,

the denoiser can produce images of acceptable quality with far fewer iterations by

post-processing the image.

The denoiser is based on statistical data sets that guide the denoising process. These data,

represented by a binary blob called a training model, are produced from a large number of

rendered images in different stages of convergence. The images are used as input to an

underlying deep learning system. (See the NVIDIA Developer article “Deep Learning”1 for

more information about deep-learning systems.)

Because deep-learning training needs significant computational resources — even obtaining a

sufficient number of partially converged images can be difficult — a general-purpose model

is included with the OptiX software. This model is suitable for many renderers. However, the

model may not yield optimal results when applied to images produced by renderers with

very different noise characteristics compared to those used in the original training data.

Post-processing rendered images includes image filters, such as blurring or sharpening, or

reconstruction filters, such as box, triangle, or Gaussian filters. Custom post-processing

performed on a noisy image can lead to unsatisfactory denoising results. During

post-processing, the original high-frequency, per-pixel noise may become smeared across

multiple pixels, making it more difficult to detect and be handled by the model. Therefore,

post-processing operations should be done after the denoising process, while reconstruction

filters should be implemented by using filter importance-sampling.

In general, the pixel color space of an image that is used as input for the denoiser should

match the color space of the images on which the denoiser was trained. However, slight

variations, such as substituting sRGB with a simple gamma curve, should not have a

noticeable impact. Images used for the training model included with the NVIDIA AI

Denoiser distribution were output directly as HDR data.

1. https://developer.nvidia.com/deep-learning

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 141

https://developer.nvidia.com/deep-learning

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

15.1 Functions and data structures for denoising

Calling function optixDenoiserCreate creates a denoiser object:

Listing 15.1

OptixResult optixDenoiserCreate(

OptixDeviceContext context,

OptixDenoiserModelKind modelKind,

const OptixDenoiserOptions* options,

OptixDenoiser* denoiser);

The OptixDenoiserModelKind is one of the following enum values:

OPTIX_DENOISER_MODEL_KIND_LDR

The input image data contains values of limited dynamic range with RGB values in the

range 0.0 to 1.0.

OPTIX_DENOISER_MODEL_KIND_HDR

The input image data contains values of high dynamic range with RGB values in the

range of 0.0 to approximately 10,000.0 or more.

OPTIX_DENOISER_MODEL_KIND_AOV

Separate passes can be defined by many rendering systems using arbitrary output

variables, or AOVs. AOV images from a rendering system can contain diffuse, emission,

glossy, specular or other types of data. High dynamic range AOV images can be passed

as input layers to optixDenoiserInvoke in addition to the beauty, RGB, albedo and

normal images. The AOV mode can be used to denoise multiple layers simultaneously

and may reduce processing time.

After denoising, the denoised output layers can be composited to a noise-free beauty

layer, typically by adding all RGB values from the denoised layers.

The first OptixDenoiserLayer in the list of layers passed to optixDenoiserInvoke is

the noisy beauty image. Subsequent layers in this list are noisy AOVs. A noisy beauty

image is required in all modes of OptixDenoiserModelKind and the denoised image for

each given layer is written back in OptixDenoiserLayer::output.

OPTIX_DENOISER_MODEL_KIND_TEMPORAL

In this mode, a sequence of images is denoised to eliminate temporal noise. It requires

the denoised beauty image from the previous frame in

OptixDenoiserLayer::previousOutput. The flow vector image is specified by

OptixDenoiserGuideLayer::flow. OptixDenoiserParams::hdrIntensity must be set

in this mode.

In the first frame of a sequence, previousOutput could be set to the noisy beauty image

of the first frame instead of the denoised version and all flow vectors set to zero.

previousOutput is read in optixDenoiserInvoke before writing a new output, so

previousOutput could be set to output (the same buffer) for efficiency if useful in the

application.

142 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.1 Functions and data structures for denoising 15 NVIDIA AI Denoiser

OPTIX_DENOISER_MODEL_KIND_TEMPORAL_AOV

In this mode, the following two additional fields are defined:

• OptixDenoiserGuideLayer::previousOutputInternalGuideLayer

• OptixDenoiserGuideLayer::outputInternalGuideLayer

The image type for both fields is a guide layer, an OptixImage2D of type

OPTIX_PIXEL_FORMAT_INTERNAL_GUIDE_LAYER. Temporal denoising relies on these

internal guide layers to carry information from the previous denoising pass, specified

with previousOutputInternalGuideLayer and outputInternalGuideLayer in the

OptixDenoiserGuideLayer struct. A set of guide layers must be provided to the

denoising pass as both input and output. These layers have the format

OPTIX_PIXEL_FORMAT_INTERNAL_GUIDE_LAYER and should be sized according to the

field internalGuideLayerPixelSizeInBytes returned by

optixDenoiserComputeMemoryResources.

An internal guide layer is a densely packed format, where each pixel has size

OptixDenoiserSizes::internalGuideLayerPixelSizeInBytes, and each row is

width × pixel size. The width and height of the guide layers are set to the same

dimensions that are used for the other layer images. The pixelStrideInBytes field of

the guide layer is set to internalGuideLayerPixelSizeInBytes. The

rowStrideInBytes field is set to width × internalGuideLayerPixelSizeInBytes.

The parameter OptixDenoiserParams::temporalModeUsePreviousLayers controls the

use of previous layers in denoising calculations. In temporal mode, setting this to 1

indicates the denoiser should read the values of the previous frame. Set to 0 for initial

frames or when you want to reset the temporal sequence. In the first frame, when using

temporal denoising modes, OptixDenoiserGuideLayer::flow must either contain valid

motion vectors if available, otherwise the xy vectors must be set to zero (no motion). In

temporal upscaling mode OptixDenoiserLayer::previousOutput is not accessed when

OptixDenoiserParams::temporalModeUsePreviousLayers is not set.

Each new sequence should contain the noisy beauty image as the value of

previousOutput. The previousOutputInternalGuideLayer image content must be set

to zero for the first frame.

Motion vectors must be set to zero if they are not available for the first frame.

Fields previousOutputInternalGuideLayer and outputInternalGuideLayer must

refer to two separate buffers; memory cannot be shared between these two buffers,

regardless of the tiling mode. The buffer memory locations must start at a 16-byte

aligned address or optixDenoiserInvoke will return an error code. After denoising a

frame, these two buffers must be exchanged, so that outputInternalGuideLayer

becomes prevousOutputInternalGuideLayer for the next frame. Instead of copying

data into the previous guide layer, you should use a double-buffering strategy by

swapping the content of the two OptixImage2D structs. You should also use double

buffering for the output and previousOutput fields of the OptixDenoiserLayer struct.

OPTIX_DENOISER_MODEL_KIND_UPSCALE2X

OPTIX_DENOISER_MODEL_KIND_TEMPORAL_UPSCALE2X

These modes upscale the input image by a factor of two in both dimensions. All output

images must be allocated accordingly using twice the original size of the input width and

height:

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 143

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

• OptixDenoiserLayer::previousOutput

• OptixDenoiserLayer::output

• OptixDenoiserGuideLayer::previousOutputInternalGuideLayer

• OptixDenoiserGuideLayer::outputInternalGuideLayer

When using OPTIX_DENOISER_MODEL_KIND_TEMPORAL_UPSCALE2X mode for the first

frame, previousOutputInternalGuideLayer image content must be set to zero. The

previousOutput field is ignored in this mode and just the memory needs to be allocated.

Internally, the noisy beauty image will be upscaled by a factor of two and used as the

previous output (similar to the non-upcaling mode where the noisy beauty image should

be passed as the previously denoised output).

The denoiser options determine the type of guide layers used:

Listing 15.2

typedef struct OptixDenoiserOptions {

unsigned int guideAlbedo;

unsigned int guideNormal;

OptixDenoiserAlphaMode denoiseAlpha;

} OptixDenoiserOptions;

The denoiseAlpha field of OptixDenoiserOptions defines how the optional alpha channel

of the noisy beauty image should be treated. The possible values of the

OptixDenoiserAlphaMode enum are:

OPTIX_DENOISER_ALPHA_MODE_COPY

This is the default, alpha is copied from input to output and not denoised.

OPTIX_DENOISER_ALPHA_MODE_DENOISE

The alpha channel is also denoised.

A denoiser object can also be created using a user-defined model:

Listing 15.3

OptixResult optixDenoiserCreateWithUserModel(

OptixDeviceContext context,

const void* userData,

size_t userDataSizeInBytes,

OptixDenoiser* denoiser);

After denoising, optixDenoiserDestroy should be called to destroy the denoiser object

along with associated host resources:

Listing 15.4

OptixResult optixDenoiserDestroy(

OptixDenoiser denoiser);

144 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.1 Functions and data structures for denoising 15 NVIDIA AI Denoiser

15.1.1 Structure and use of image bu�ers

An RGB image buffer that contain a noisy image is provided as input to the denoising

process. The optional fourth (alpha) channel of the image can be configured so that it is

ignored by the denoiser. Note that this buffer must contain values between 0 and 1 for each of

the three color channels (for example, as the result of tone-mapping) and should be encoded

in sRGB or gamma space with a gamma value of 2.2 when working with low dynamic range

(LDR) input.

When working with high dynamic range (HDR) input instead, RGB values in the color buffer

should be in a range from zero to 10,000, and on average not too close to zero, to match the

built-in model. Images in HDR format can contain single, extremely bright, nonconverted

pixels, called fireflies. Using a preprocess pass that corrects drastic under- or over-exposure

along with clipping or filtering of fireflies on the HDR image can improve the denoising

quality dramatically. Note, however, that no tone-mapping or gamma correction should be

performed on HDR data.

An optional, noise-free normal buffer contains the surface normal vectors of the primary hit

in camera space. The normal buffer is enabled by OptixDenoiserOptions::guideNormal

and specified by OptixDenoiserGuideLayer::normal. This buffer contains data in format

OPTIX_PIXEL_FORMAT_HALF3 or OPTIX_PIXEL_FORMAT_FLOAT3. These two formats can

represent the x, y and z components of a vector. The normal buffer must have the same type

and dimensions as the input buffer. The vectors in the normal buffer are normalized.

The camera space is assumed to be right-handed such that the camera is looking down the

negative z axis, and the up direction is along the y axis. The x axis points to the right.

Visualizing the normal vectors as colors for debugging purposes should produce images

similar to Figure 15.1 (page 146) and Figure 15.2 (page 146). The scanlines of the normal

buffer proceed from top to bottom in the images. The surface normal vector components have

values in the range [-1.0, 1.0]. Figure 15.1 (page 146) maps the component values to the range

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 145

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

[0.0, 1.0]. Figure 15.2 (page 146) clamps the component values to [0.0,1.0]. The value of a

normal buffer pixel for which there was no primary hit is (0,0,0).

Fig. 15.1 - Surface normal vector components mapped
to [0.0, 1.0]

Fig. 15.2 - Surface normal vector components
clamped to [0.0, 1.0]

The normal buffer can improve denoising quality for scenes containing a high degree of

geometric detail. This detail may be part of the geometric complexity of the surface itself, or

may be the result of high-resolution images used in normal or bump mapping.

The optional, noise-free albedo image represents an approximation of the color of the surface

of the object, independent of view direction and lighting conditions. In physical terms, the

albedo is a single color value approximating the ratio of radiant exitance to the irradiance

under uniform lighting. The albedo value can be approximated for simple materials by using

the diffuse color of the first hit, or for layered materials, by using a weighted sum of the

albedo values of the individual BRDFs. For some objects such as perfect mirrors or highly

glossy materials, the quality of the denoising result might be improved by using the albedo

value of a subsequent hit instead. The fourth channel of this buffer is ignored, but must have

the same type and dimensions as the input buffer. Specifying albedo can dramatically

improve denoising quality, especially for very noisy input images.

15.1.2 Temporal denoising modes

In temporal denoising modes, pixels in the two-dimensional flow image represents the

motion from the previous to the current frame for that pixel. Pixels in the flow image can be

in one of two formats:

• OPTIX_PIXEL_FORMAT_FLOAT2

• OPTIX_PIXEL_FORMAT_HALF2

Figure 15.3 (page 147) shows the definition of the flow vector based on the hit points of the

current and previous frames.

146 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.1 Functions and data structures for denoising 15 NVIDIA AI Denoiser

x
1 2 3 4 5

(1,4)

(4,2)

x = 3

y = – 2
flow vector

hit point
frame

previous

hit point
frame

current

y

1

2

3

4

5

(1,4)

(4,2)

x = 3

y = – 2
flow vector

hit point
frame

previous

hit point
frame

current

Fig. 15.3 - Definition of the flow vector based on the previous
and current hit points

If the hit point of the surface at position (4,2) in the current frame has moved from position

(1,4) in the previous frame, the flow vector at position (4,2) would be x=3, y=-2. This flow

vector definition assumes that images define y=0 at the top of the image. If images define y=0

at the bottom, this flow vector would be x=3, y=2. The flow vector coordinates must be

described with subpixel (fractional) precision.

The OptiX SDK provides the OptixDenoiser sample which could be used to verify properly

specified flow vectors. When invoked with -z, the tool looks up the position in the previous

frame of each pixel using the flow vector. The pixel value from the previous frame position is

looked up in the current frame position and written. When denoising a sequence with the -z

option, frame N with motion applied should look similar to frame N+1 in the noisy input

sequence. There should be no major jumps when comparing these images, just shading

differences as well as differences due to disocclusion and so forth.

15.1.3 Allocating denoiser memory

To allocate the required, temporary device memory to run the denoiser, call function

optixDenoiserComputeMemoryResources:

Listing 15.5

OptixResult optixDenoiserComputeMemoryResources(

const OptixDenoiser denoiser,

unsigned int outputWidth,

unsigned int outputHeight,

OptixDenoiserSizes* returnSizes);

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 147

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

The memory requirements are returned in the fields of struct OptixDenoiserSizes:

Listing 15.6

typedef struct OptixDenoiserSizes {

size_t stateSizeInBytes;

size_t withOverlapScratchSizeInBytes;

size_t withoutOverlapScratchSizeInBytes;

unsigned int overlapWindowSizeInPixels;

size_t computeAverageColorSizeInBytes

size_t computeIntensitySizeInBytes

size_t internalGuideLayerPixelSizeInBytes;

} OptixDenoiserSizes;

The OptixDenoiserSizes values are used as input to function optixDenoiserSetup:

Listing 15.7

OptixResult optixDenoiserSetup(

OptixDenoiser denoiser,

CUstream stream,

unsigned int inputWidth,

unsigned int inputHeight,

CUdeviceptr denoiserState,

size_t denoiserStateSizeInBytes,

CUdeviceptr scratch,

size_t scratchSizeInBytes);

In tiling mode, the inputWidth and inputHeight values should include two times the

overlap size in the tile window dimensions.

148 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.1 Functions and data structures for denoising 15 NVIDIA AI Denoiser

15.1.4 Using the denoiser

To execute denoising on a given image, call function optixDenoiserInvoke:

Listing 15.8

OptixResult optixDenoiserInvoke(

OptixDenoiser denoiser,

CUstream stream,

const OptixDenoiserParams* params,

CUdeviceptr denoiserState,

size_t denoiserStateSizeInBytes,

const OptixDenoiserGuideLayer* guideLayer,

const OptixDenoiserLayer* layers,

unsigned int numLayers,

unsigned int inputOffsetX,

unsigned int inputOffsetY,

CUdeviceptr scratch,

size_t scratchSizeInBytes);

When guide layers are enabled in OptixDenoiserOptions, the corresponding image buffers

are specified by the OptixDenoiserGuideLayer struct. In temporal modes a flow vector

image is specified by the OptixDenoiserGuideLayer::flow field.

Listing 15.9

typedef struct OptixDenoiserGuideLayer {

OptixImage2D albedo;

OptixImage2D normal;

OptixImage2D flow;

OptixImage2D previousOutputInternalGuideLayer;

OptixImage2D outputInternalGuideLayer;

OptixImage2D flowTrustworthiness;

} OptixDenoiserGuideLayer;

Beauty and AOV layers are specified by the OptixDenoiserLayer::input. The denoised

output of the beauty image in the layer is written to output. In temporal modes the denoised

beauty image from the previous frame for a layer is specified by

OptixDenoiserLayer::previousOutput.

Listing 15.10

typedef struct OptixDenoiserLayer {

OptixImage2D input;

OptixImage2D previousOutput;

OptixImage2D output;

} OptixDenoiserLayer;

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 149

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

The denoiser layers are defined by sets of struct OptixImage2D:

Listing 15.11

typedef struct OptixImage2D {

CUdeviceptr data;

unsigned int width;

unsigned int height;

unsigned int rowStrideInBytes;

unsigned int pixelStrideInBytes;

OptixPixelFormat format;

} OptixImage2D;

Function optixDenoiserInvoke executes the denoiser on a set of input data and produces

one output image. State memory must be available during the execution of the denoiser or

until optixDenoiserSetup is called with a new state memory pointer. Scratch memory

passed as a CUdeviceptr must be exclusively available to the denoiser during execution. It is

only used for the duration of optixDenoiserInvoke. Scratch and state memory sizes must

have a size greater than or equal to the sizes returned by

optixDenoiserComputeMemoryResources.

Input and output to the denoiser uses struct OptixImage2D to represent pixel data:

Listing 15.12

typedef struct OptixImage2D {

CUdeviceptr data;

unsigned int width;

unsigned int height;

unsigned int rowStrideInBytes;

unsigned int pixelStrideInBytes;

OptixPixelFormat format;

} OptixImage2D;

Parameters inputOffsetX and inputOffsetY are pixel offsets in the inputLayers image.

These offsets specify the beginning of the image without overlap. When denoising an entire

image without tiling, there is no overlap and inputOffsetX and inputOffsetY must be zero.

When denoising a tile which is adjacent to one of the four sides of the entire image the

corresponding offsets must also be zero; there is no overlap at the side adjacent to the image

border. Parameters inputWidth and inputHeight correspond to the values passed to

optixDenoiserComputeMemoryResources.

The structure of pixel data is defined by the enum OptixPixelFormat:

150 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.1 Functions and data structures for denoising 15 NVIDIA AI Denoiser

Field name Description

OPTIX_PIXEL_FORMAT_HALF2 Two halfs, XY

OPTIX_PIXEL_FORMAT_HALF3 Three halfs, RGB/XYZ

OPTIX_PIXEL_FORMAT_HALF4 Four halfs, RGBA/XYZW

OPTIX_PIXEL_FORMAT_FLOAT2 Two floats, XY

OPTIX_PIXEL_FORMAT_FLOAT3 Three floats, RGB/XYZ

OPTIX_PIXEL_FORMAT_FLOAT4 Four floats, RGBA/XYZW

OPTIX_PIXEL_FORMAT_INTERNAL_GUIDE_LAYER internal format

The OptixPixelFormat value of the inputLayers must match the format that was specified

during optixDenoiserCreate. The outputLayer must have the same width, height and

pixel format as the input RGB(A) layer. All input layers must have the same width and height.

Further control over denoising is provided by the OptixDenoiserParams struct:

Listing 15.13

typedef struct OptixDenoiserParams {

CUdeviceptr hdrIntensity;

float blendFactor;

CUdeviceptr hdrAverageColor;

unsigned int temporalModeUsePreviousLayers;

} OptixDenoiserParams;

The blendFactor field specifies an interpolation weight between the noisy input image (1.0)

and the denoised output image (0.0). Calculation of hdrIntensity is described in

“Calculating the HDR intensity parameter” (page 152).

Parameter hdrAverageColor is used when the OPTIX_DENOISER_MODEL_KIND_AOV model

kind is set. This parameter is a pointer to three floats that are the average log color of the RGB

channels of the input image. The default value (the null pointer) will produce results that are

not optimal.

When denoising entire images without tiling, the same scratch memory as passed to

optixDenoiserInvoke could be used.

15.1.5 Calculating the HDR average color of the AOV model

The function optixDenoiserComputeAverageColor computes the average logarithmic value

for each of the first three channels of the input image. When denoising tiles the intensity of

the entire image should be computed — not per tile — for consistent results.

The inputImage parameter must contain three or four components of type half or float. The

data type unsigned char is not supported.

The required scratch memory sizes for the API functions

optixDenoiserComputeAverageColor and optixDenoiserComputeIntensity should be

queried with optixDenoiserComputeMemoryResources. The scratch memory size for these

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 151

15 NVIDIA AI Denoiser 15.1 Functions and data structures for denoising

functions is stored in OptixDenoiserSizes::computeAverageColorSizeInBytes and

OptixDenoiserSizes::computeIntensitySizeInBytes

Listing 15.14

OptixResult optixDenoiserComputeAverageColor(

OptixDenoiser denoiser,

CUstream stream,

const OptixImage2D* inputImage,

CUdeviceptr outputAverageColor,

CUdeviceptr scratch,

size_t scratchSizeInBytes);

15.1.6 Calculating the HDR intensity parameter

The value of hdrIntensity in OptixDenoiserParams can be calculated in one of two ways.

A custom application-side, preprocessing pass on the image data could provide a result value

of type float.

Intensity can also be calculated by calling function optixDenoiserComputeIntensity:

Listing 15.15

OptixResult optixDenoiserComputeIntensity(

OptixDenoiser denoiser,

CUstream stream,

const OptixImage2D* inputImage,

CUdeviceptr outputIntensity,

CUdeviceptr scratch,

size_t scratchSizeInBytes);

Function optixDenoiserComputeIntensity calculates the logarithmic average intensity of

parameter inputImage. The calculated value is returned in parameter outputIntensity as a

pointer to a single value of type float.

Intensity calculation can be dependent on optixDenoiserInvoke. The params parameter of

optixDenoiserInvoke is a struct of type OptixDenoiserParams. By default, the

hdrIntensity field of OptixDenoiserParams is a null pointer. If hdrIntensity is not a null

pointer, it points to an array of RGB values that are multiplied by the output values in

outputIntensity. This is useful for denoising HDR images which are very dark or bright.

When denoising with tiles, the intensity of the entire image should first be computed for

consistent results across tiles. (Tiling is described in the “Using image tiles with the denoiser”

(page 153).)

For each RGB pixel in the inputImage the intensity is calculated and summed if it is greater

than 1e-8f as follows:

intensity = log(r × 0.212586 + g × 0.715170 + b × 0.072200)

152 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.2 Using image tiles with the denoiser 15 NVIDIA AI Denoiser

The function returns:
0.18

exp

(

sum_o f _intensities

number_o f _summed_pixels

)

Execution of optixDenoiserComputeIntensity requires a scratch memory size in bytes of at

least:

sizeof(int) * (2 + inputImage::width * inputImage::height)

When denoising entire images (without tiling) the same scratch memory that is passed to

optixDenoiserInvoke can be used.

Further information about this tone-mapping strategy can be found in “Photographic Tone

Reproduction for Digital Images”2 by Erik Reinhard, et al.

15.2 Using image tiles with the denoiser

Denoising can be performed incrementally on subregions of an image to limit memory usage

during the denoising process. An image is divided in to a set of tiles defined by their width

and height, as well as a surrounding region of overlapping pixels to avoid discontinuities at

tile boundaries.

For example, Figure 15.4 (page 154) describes a possible structure for tiles and their

overlapping regions using OptixImage2D:

2. https://dl.acm.org/doi/10.1145/566654.566575

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 153

https://dl.acm.org/doi/10.1145/566654.566575
https://dl.acm.org/doi/10.1145/566654.566575

15 NVIDIA AI Denoiser 15.2 Using image tiles with the denoiser

void* outputBuffer;

void* inputBuffer;

OptixImage2D in;

OptixImage2D out;

o
u
t
.
h
e
i
g
h
t

o
u
t
.
h
e
i
g
h
t

out.widthout.width
i
n
.
h
e
i
g
h
t

i
n
.
h
e
i
g
h
t

in.widthin.width

out.rowStrideInBytes

 in.rowStrideInBytes

out.rowStrideInBytes

 in.rowStrideInBytes

u
n
s
i
g
n
e
d

i
n
t

i
n
p
u
t
O
f
f
s
e
t
Y
;

unsigned int inputOffsetX;

in.data[0]

out.data[0]

Fig. 15.4 - An example of a denoiser tiling layout

The tiling code must accommodate tile sizes that do not evenly divide the image buffers.

Figure 15.5 shows a tile that with a consistent overlap size on all edges:

Fig. 15.5 - Output tile with overlap

154 NVIDIA OptiX 8.1 – Programming Guide © 2024 NVIDIA Corporation

15.2 Using image tiles with the denoiser 15 NVIDIA AI Denoiser

Figure 15.6 (page 155) shows how a tiling procedure could vary the tile sizes based on their

position in the input and output buffers.

Fig. 15.6 - Tiles in corners showing variable overlap

The OptiX SDK includes an example of the tiling process. See header file

optix_denoiser_tiling.h in the SDK examples.

© 2024 NVIDIA Corporation NVIDIA OptiX 8.1 – Programming Guide 155

	 Preface
	 Terms used in this document

	Overview
	Basic concepts and definitions
	Program
	Program and data model
	Shader binding table
	Ray payload
	Primitive attributes
	Buffer

	Acceleration structures
	Opacity micromaps
	Traversing the scene graph
	Ray tracing with NVIDIA OptiX

	Implementation principles
	Error handling
	Thread safety
	Stateless model
	Asynchronous execution
	Opaque types
	Function table and entry function

	Context
	Sending messages with a callback function
	Compilation caching
	Validation mode

	Acceleration structures
	Primitive build inputs
	Curve build inputs
	Sphere build inputs
	Instance build inputs
	Build flags
	Dynamic updates
	Relocation
	Compacting acceleration structures
	Traversable objects
	Traversal of a single geometry acceleration structure

	Motion blur
	Basics
	Motion geometry acceleration structure
	Motion instance acceleration structure
	Motion matrix transform
	Motion scale/rotate/translate transform
	Transforms trade-offs

	Opacity micromaps
	Opacity micromap arrays
	Usage
	Construction of the geometry acceleration structure
	Traversal

	Encoding

	Displaced micro-meshes
	Displaced micro-meshes
	Displacement micro-maps
	Displacements blocks
	Uncompressed displacement block format
	Compressed displacement block formats

	Edge decimation

	Displaced micro-mesh API
	Displacement micro-map arrays
	Geometry acceleration structure build for DMM triangles

	Program pipeline creation
	Program input
	Programming model
	Module creation
	Pipeline launch parameter
	Parameter specialization

	Program group creation
	Pipeline linking
	Pipeline stack size
	Constructing a path tracer

	Compilation cache

	Shader binding table
	Records
	Layout
	Acceleration structures
	SBT instance offset
	SBT geometry-AS index
	SBT trace offset
	SBT trace stride
	Example SBT for a scene

	SBT record access on device

	Shader execution reordering
	Introduction
	API overview
	optixReorder
	optixReorder and raytracing
	Hit objects
	Coherence hints
	More ways to use the hit object

	Best practices
	When to use (and when not to use) reordering
	Optimizing warp coherence
	Optimizing live state
	Using coherence hint bits judiciously
	Tailoring payload types to invoked shaders

	API Reference
	Querying optixReorder behavior
	optixTraverse
	optixMakeHitObject
	optixMakeHitObjectWithRecord
	optixMakeMissHitObject
	optixMakeNopHitObject
	optixInvoke
	The hit object's state

	optixReorder
	Interaction with payload semantic types

	Curves and spheres
	Differences between curves, spheres, and triangles
	Splitting curve segments
	Curves and the hit program
	Spheres and the hit program
	Interpolating curve endpoints
	Back-face culling
	Limitations

	Ray generation launches
	Limits
	Device-side functions
	Launch index
	Trace
	Payload access
	Reporting intersections and attribute access
	Ray information
	Undefined values
	Intersection information
	SBT record data
	Vertex random access
	Displaced micro-mesh triangle vertices

	Geometry acceleration structure motion options
	Transform list
	Instance random access
	Terminating or ignoring traversal
	Exceptions

	Payload
	Callables
	Callable programs
	Implementing a callable program
	Non-inlined functions

	NVIDIA AI Denoiser
	Functions and data structures for denoising
	Structure and use of image buffers
	Temporal denoising modes
	Allocating denoiser memory
	Using the denoiser
	Calculating the HDR average color of the AOV model
	Calculating the HDR intensity parameter

	Using image tiles with the denoiser

