
Material Definition Language

Technical introduction

3 October 2024

Version 1.2

Material Definition Language – Technical introduction

Copyright Information

➞ 2024 NVIDIA Corporation. All rights reserved. Document build number rev377400.3959

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction ii

Contents

1 Background 1

2 Overview of key MDL features 2

3 Comparing MDL to shading languages 4

4 Language elements and re-use 5

5 Materials 6

5.1 Elemental distribution functions . 7

5.1.1 Bidirectional scattering distribution functions . 8

5.1.2 Emissive distribution functions . 11

5.1.3 Volume distribution functions . 12

5.1.4 Measured materials . 13

5.2 Distribution function modifiers and combiners . 14

5.3 MDL syntax . 18

6 Modules 21

7 Functions 22

8 Types 23

9 Annotations 24

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction iii

1 Background

Renderers produce images from scene descriptions. A scene description consists of three-

dimensional geometric objects and their positioning in space. Common object representations

describe objects by their surface geometry, which sometimes only represent surfaces in space

and sometimes represent volumetric objects that are enclosed by the surface description.

Surfaces and volumes have material properties that determine how they interact with light

and, ultimately, how they are rendered in an image. Material properties range from the color

of surfaces, to their reflection or refraction properties, light emission of surfaces, scattering and

absorption properties of volumes, and even to additional geometric properties of surfaces,

such as cut-outs, displacements, or bump maps, which are commonly not modeled in the

primary geometric description.

For greatest flexibility, rendering systems often use programming languages to describe ma-

terial properties. These can be general purpose languages, such as C, or domain specific lan-

guages, commonly referred to as shading languages, since material authors can program how

the actual shading of a surface is computed from material parameters, incoming light, and

more. Shader programmers can and do go to the extreme of writing full renderers in shader

programs. However, modern renderers can implement techniques such as multiple impor-

tance sampling only if they understand the material properties. This analysis is difficult with

traditional shading languages, since they define the computation for the shading result itself

and not just the material properties. Material Definition Language (MDL) is a domain-specific

programming language that can define material properties to serve modern renderers in this

sense.

This document gives you a functional overview of MDL. The next section provides a quick

overview of key features. The following sections provide more detail about those features.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 1

2 Overview of key MDL features

MDL consists of two major parts:

1. A declarative material definition based on a powerful material model

2. A procedural programming language to define functions that can compute values for the

parameters of the material model

The declarative material definition defines what to compute, not how to compute it, while

the procedural programming language preserves the infinite flexibility for creative material

authors to define material properties with their own programs.

Key features:

• MDL is independent of rendering algorithms. The declarative material definition inter-

faces with a renderer through the underlying material model, which is purely descriptive

in terms of physical material properties and agnostic of any renderer algorithm.

• MDL supports the needs of modern rendering algorithms with a well-defined material

model and enough material properties to support path tracing or multiple importance

sampling.

• MDL is supported across a series of renderers developed by NVIDIA and it is designed

to be extensible and adoptable by other renderers.

• Material definitions in MDL can be parameterized to enable flexible, custom-built domain-

specific material libraries.

• MDL has a well-defined module and package concept to support packaging and distri-

bution of material libraries.

• MDL supports the re-use and further customization of additional materials.

• MDL supports the customization of materials with predefined parameter sets, such that

a material library for a certain material family can be based on one generic material and

various parameter sets for specific instances of that material. When such a predefined

parameter set is used, it can then still be modified to further adjust the look of the material.

• The renderer state and the standard modules defined by MDL enable material authors to

program a wide variety of functions to initialize material parameters, including procedu-

ral methods, noise-based textures, texture projection maps, and texture blend pipelines.

• MDL is designed for modern highly-parallel machine architectures. The procedural lan-

guage only allows the definition of pure functions that have access to rendering state and

that are free of side effects and global dependencies. These functions can therefore be

scheduled and executed depending on the needs of the renderer and machine architec-

ture.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 2

2 Overview of key MDL features

Although it emphasizes physically plausible materials, MDL supports traditional computer

graphics techniques that are important in conventional rendering and modeling workflows. A

MDL material is, in general, applied to a surface and consists of the following properties:

• Surface properties that describe the bidirectional scattering distribution function (BSDF) for

reflective and transmissive properties, the emissive distribution function (EDF) for emissive

properties and the radiant exitance for the amount of emission.

• A Boolean flag that specifies whether the surface encloses a volume, and thereby defines

if the volume properties apply to the enclosed volume or should be ignored.

• Additional surface properties that can be used to define the back-side material for surfaces

that do not enclose a volume.

• Volume properties that describe the scattering and absorption coefficients and the volume

distribution function (VDF), also known as the volume phase function.

• Geometric properties that describe cut-outs, displacement mapping, and normal map-

ping.

• BSDF properties that are set to values composed from a fixed set of elemental BSDFs

and operators on them. These operators can be modifiers for tinting or thin-film effect,

or they can be combining functions for a weighted mix or layering of BSDFs including

Fresnel effects. The layering operator supports an additional normal mapping effect local

to the top image. These combinators make this a very flexible material model.

• EDF and VDF properties can be composed similar to BSDFs.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 3

3 Comparing MDL to shading languages

The use of conventional shading languages can be roughly categorized as follows:

1. They are used to implement functions to describe the spatial distribution of material fea-

tures — texture lookups, procedural textures, and projections.

2. They are used to provide re-usable building blocks, called shaders, that describe materials

with parameters that correspond to material properties, such as the reflective, emissive

and transmissive behavior of an object.

3. They are used to implement the computations needed in shaders, such as light-material

interactions or other algorithmic extensions of the renderer. Shaders may even imple-

ment full-scale rendering computations, such as volume renderers, particle renderers or

complete global illumination solutions.

While these areas are typically used by different audiences and require different user skills,

traditional shading languages do not explicitly distinguish between these use cases. MDL

clearly separates those domains to address the specific needs of the different audiences.

In the three numbered areas above, the first corresponds to what MDL offers with its proce-

dural language for implementing functions. The second area corresponds to what MDL offers

with its material definition and rich, highly configurable material model. The third area has

no correspondence in MDL and is seen as the domain of the renderer.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 4

4 Language elements and re-use

Functions, materials with their components, and modules are the main language elements that

MDL offers for material libraries and re-use.

Functions can be used individually for the parameters of a renderer, for example, the environ-

ment color, or to provide values for material parameters such as a texture lookup for a color

parameter for a material. Functions can also provide a mechanism for code re-use and data

hiding by encapsulating other functions. The encapsulated functions can be provided with ex-

plicit parameter values within the body of the encapsulating function. The resulting function

can implemented as a complex calculation with a simpler signature that provides control only

for those parameters significant for the intended effect.

Materials and their BSDF, EDF, and VDF properties are the main building blocks in MDL.

They can be passed to other materials as parameters, which allows the development of generic

materials that re-use aspects of a material and extend or change other aspects. For example,

a new material could be based on a generic material that takes another material as input and

changes it to a thin-walled material by applying the surface properties of the other material on

both sides of the surface.

A material definition can define input parameters that can be used within the material in ex-

pressions and function call parameters to initialize properties of the material model or of other

already existing materials. Parameterizing a material definition enables the encapsulation and

customization of materials to create custom material libraries.

MDL supports the customization of materials with predefined parameter sets, so that a ma-

terial library for a certain material family can be based on one generic material and various

parameter sets for specific instances of that material. When such a predefined parameter set is

used, it can then still be modified to further adjust the appearance of the material. For example,

a general metal material can be used with a family of parameter sets to offer a material library

of different gold and silver alloys. A user can pick a specific material from the library but still

modify the final color.

All files in MDL are defined to be modules. They define a namespace and shield identifiers

from name clashes, which is useful if material libraries are deployed and used together with

other libraries or further in-house material developments. Modules can contain materials,

functions, and related types and constants.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 5

5 Materials

MDL provides a purely declarative syntax for describing the interaction of an object with

light. It relies on predefined building blocks that can be efficiently implemented in a mod-

ern renderer, yet are powerful enough to describe a large majority of real-world materials. The

renderer-side interface of the material, the material model, is represented by a MDL built-in

structure-like type, which contains the different properties of the material:

Listing 5.1

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

uniform color ior = color(1.0);

material_volume volume = material_volume();

material_geometry geometry = material_geometry();

};

Depending on the building blocks used, three different kinds of materials can be distinguished:

1. Regular materials describing a surface that separates one volume from another

2. Thin-walled materials where the geometry only describes a soap-bubble like shell

3. Two-sided materials which also have the thin-walled property, but interact differently

with light hitting the geometry from the back side

The surface, emission, volume, and geometry aspects are also defined by built-in structure-like

types:

Listing 5.2

struct material_surface {

bsdf scattering = bsdf();

material_emission emission = material_emission();

};

Listing 5.3

struct material_emission {

edf emission = edf();

color intensity = color(0.0);

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 6

5 Materials 5.1 Elemental distribution functions

intensity_mode mode = intensity_radiant_exitance;

};

Listing 5.4

struct material_volume {

vdf scattering = vdf();

color absorption_coefficient = 0.0;

color scattering_coefficient = 0.0;

};

Listing 5.5

struct material_geometry {

float3 displacement = float3(0.0);

float cutout_opacity = 1.0;

float3 normal = state::normal();

};

5.1 Elemental distribution functions

To describe the interaction with light, MDL provides a set of elemental distribution functions.

The names of the distribution functions end with one of three suffixes:

bsdf Describes the interaction of the light with the surface

edf Describes the emissive properties of the surface

vdf Describes the light distribution in the volume

The elemental distribution functions are used as components of materials. The following three

sections use these functions in minimal materials to demonstrate their visual properties.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 7

5 Materials 5.1 Elemental distribution functions

5.1.1 Bidirectional scattering distribution functions

The elemental BSDFs define the action of light at the surface of an object: how it is reflected

from the surface and transmitted through the surface.

Fig. 5.1 - diffuse_reflection_bsdf

diffuse_reflection_bsdf

A colored diffuse reflection component using

roughness based on the Oren-Nayar model.

This BSDF also implements pure Lambertian

reflection.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 8

5 Materials 5.1 Elemental distribution functions

Fig. 5.2 - diffuse_transmission_bsdf

diffuse_transmission_bsdf

A colored diffuse Lambertian transmission

component.

Fig. 5.3 - specular_bsdf

specular_bsdf

A component representing colored specular

reflection, specular transmission (refraction) or

a combination of both. This image

demonstrates pure specular reflection.

Fig. 5.4 - specular_bsdf

specular_bsdf

The use of the specular_bsdf in this image

demonstrates pure specular transmission. The

index of refraction is controlled as a parameter

to the BSDF.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 9

5 Materials 5.1 Elemental distribution functions

Fig. 5.5 - specular_bsdf

specular_bsdf

This image combines both the reflective and

transmissive factors of specular_bsdf. If

transmission and reflection are enabled at the

same time, they are combined using a Fresnel

term based on the index of refraction specified

for the volume. This image also demonstrates

how the color parameter of a distribution

function can scale the function’s result.

Fig. 5.6 - simple_glossy_bsdf

simple_glossy_bsdf

A component representing colored glossy

reflection, glossy transmission or a

combination of both. As in the specular case, if

transmission and reflection are enabled at the

same time, they are combined using the

Fresnel term.

Fig. 5.7 - backscattering_glossy_
reflection_bsdf

backscattering_glossy_reflection_bsdf

A colored glossy-reflection component capable

of simulating back-scattering of light.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 10

5 Materials 5.1 Elemental distribution functions

5.1.2 Emissive distribution functions

MDL defines a set of elemental emission distribution functions to simulate the light that inter-

acts with MDL’s surface and volume definitions. The traditional computer graphics methods

of lighting a scene with special purpose constructs (like "directional lights" and "point lights")

is replaced in MDL by defining properties of geometric objects so that they emit light. In this

way, the syntactic expression of lighting is unified with the expression of surface and volume

appearance. As geometric objects, "lights" in MDL are also more readily integrated into the

scene definition interface of 3D applications.

Fig. 5.8 - diffuse_edf

diffuse_edf

Light emitted in all directions from the surface

of the object, called Lambertian light distribution

by analogy to Lambertian diffuse reflection.

The spherical geometric object defined with

the emissive material is visible in the image,

but without the typical perceptual or

photograph effects that provide "bloom" or

lens distortions.

Fig. 5.9 - spot_edf

spot_edf

Distribution of the emission based on the

cosine between emission direction and surface

normal (exponential cosine distribution). The

emissive object is visible as a dark gray sphere

because the camera is located at the edge of

the cone of light distribution.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 11

5 Materials 5.1 Elemental distribution functions

Fig. 5.10 - measured_edf

measured_edf

Light distribution based on a measured light

profile. Arbitrary geometric structure for light

distribution from the emissive object can be

specified based on standard industrial formats

called light profiles. Here the sharper boundary

of the spatial distribution of light energy

allows the light reflected by the diffuse surface

of the object to be seen as a reddish color in the

shadowed area.

5.1.3 Volume distribution functions

BSDFs define the action of light at the object’s surface. Volume distribution functions (VDFs)

specify the behavior of light within an object. In combination, they provide for all the possibil-

ities of light reflection, transmission, and interior modulation for lighting simulation.

Fig. 5.11 - anisotropic_vdf

anisotropic_vdf

Addition of absorption effects and subsurface

scattering to the material’s volume. The BSDF

for this material specifies that all light

penetrates the object (transmission scattering

mode).

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 12

5 Materials 5.1 Elemental distribution functions

Fig. 5.12 - anisotropic_vdf

anisotropic_vdf

Parametric control of the volume distribution

function can simulate a wide variety of

physical substances. The material of this

image only differs from the material of the

previous image in the BSDF specifying both

reflection and transmission of the light, and in

the values of three VDF parameters that define

the index of refraction, the degree of

scattering, and the scattering direction within

the object.

Fig. 5.13 - anisotropic_vdf

anisotropic_vdf

Even with apparently simple materials made

from the elemental BSDFs, the design of the

lighting simulation can reveal complex

properties of the material. Here the material of

the object, anisotropic_vdf, is identical to

the previous example, lit by the emmisive

distribution function measured_edf of the

previous section.

5.1.4 Measured materials

The previous definitions of light transport used analytic methods which depend upon a math-

ematical theory of the physics of light. MDL also supports material definitions based on mea-

surement of real-world surfaces, where light interaction with objects is measured over a series

of different incident light and viewing angles. The resulting dataset is used as input to an

elemental BSDF in MDL that defines a measured BSDF.

A measurement dataset can be used as an MDL input parameter by constructing a value of

type bsdf_measurement. The bsdf_measurement constructor takes a file path of a measure-

ment dataset as an input argument:

Listing 5.6

bsdf_measurement(uniform string name)

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 13

5 Materials 5.2 Distribution function modifiers and combiners

A value of bsdf_measurement is used as the argument for the measurement parameter of the

BSDF measured_bsdf:

Listing 5.7

bsdf measured_bsdf (

uniform bsdf_measurement measurement,

uniform float multiplier = 1.0,

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Fig. 5.14 - measured_bsdf

measured_bsdf

The red material is defined by a measurement

of a car paint surface. The materials of the

pedestal and ground are defined by

measurements of carpet and cement,

respectively. Accompanying texture maps

supply the level of fine color detail for the

carpet and cement.

Fig. 5.15 - measured_bsdf

measured_bsdf

In this image the pedestal and ground

materials have been exchanged. The geometric

models define a parametric space for the

texture mapping, which is combined with

scaling factors for the texture application

provided by the material. The blue car paint

here uses the same material as the previous

example, with a different measured data set

provided as the value of the name parameter to

bsdf_measurement.

5.2 Distribution function modifiers and combiners

The previous sections showed simple materials built from the elemental distribution functions

based on analytic methods and real-world measurements. MDL also provides building blocks

to combine or modify BSDFs to enable the description of more complex light-material inter-

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 14

5 Materials 5.2 Distribution function modifiers and combiners

actions. The elemental EDFs can also be mixed together to implement combined emission

properties in a single material.

Distribution function modifiers and combiners can describe complex reflective and transmis-

sive characteristics (compound distribution functions). Because of their uniform syntax, an-

alytic and measured materials can also be combined. Modifiers can be applied recursively,

allowing further modification and combination of compounds.

normalized_mix

Mix N elemental or compound distribution functions based on N float weights. If the sum

of the weights exceeds 1, they are normalized.

clamped_mix

Mix N elemental or compound distribution functions based on N float weights. Distri-

bution functions and weights are summed in the order they are given. When the sum of

weights reaches 1, the remainder, if any, is clamped.

weighted_layer

Add an elemental or compound BSDF as a layer on top of another elemental or compound

BSDF according to a weight w. The base is weighted with 1-w.

fresnel_layer

Add an elemental or compound BSDF as a layer on top of another elemental or compound

BSDF according to a weight w and a Fresnel term using a dedicated index of refraction for

the layer. The base is weighted with 1-(w*fresnel(ior)).

custom_curve_layer

Add an elemental or compound BSDF as a layer on top of another elemental or compound

BSDF according to a weight w and a Schlick-style directional-dependent curve function.

The base is weighted with 1-(w*curve()).

measured_curve_layer

Add an elemental or compound BSDF as a layer on top of another elemental or compound

BSDF according to a weight w and a directional-dependent measurement of the reflection

behavior. The base is weighted with 1-(w*measurement()).

tint

Tint the result of an elemental or compound distribution function with an additional color.

thin_film

Add reflective thin film interference color to an elemental or compound BSDF.

directional_factor

A direction-dependent weight based on a custom curve that is applied to one elemental

or compound BSDF.

measured_curve_factor

A direction-dependent weight based on a measured reflection curve that is applied to one

elemental or compound BSDF.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 15

5 Materials 5.2 Distribution function modifiers and combiners

The following series demonstrates the sequential combination of a series of BSDFs. Each suc-

cessive image adds a new layer to the previous one.

Fig. 5.16 - The base layer is defined by diffuse_reflection_bsdf with a tinting color of red.

Fig. 5.17 - A yellow-tinted diffuse_reflection_bsdf is added to the edges with
custom_curve_layer.

Fig. 5.18 - A layer of simple_glossy_bsdf is added using weighted_layer.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 16

5 Materials 5.2 Distribution function modifiers and combiners

Fig. 5.19 - Another layer of simple_glossy_bsdf with sharper highlights is added with
weighted_layer.

Fig. 5.20 - Adding a layer of specular_bsdf with fresnel_layer resembles the clear coat of an
automotive finish.

Analytic and measured materials can also be combined. Measurement devices for light scat-

tering may have difficulty accurately recording intensities at extreme grazing angles. For ex-

ample, the measured car paint renderings lack the glossy reflections that are typical at edges.

Defining this reflection as a layer to be combined with the measured BSDF can produce the

missing effect.

Fig. 5.21 - Only using measurement data Fig. 5.22 - Adding edge reflection as a layer

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 17

5 Materials 5.3 MDL syntax

5.3 MDL syntax

MDL provides a notation inspired by functional programming to create a custom material

struct and then map an input parameter set to this material. The following example describes a

simple material exhibiting Lambertian reflective properties and an input providing a diffuse_

color input defaulting to red:

Listing 5.8

material diffuse (

color diffuse_color = color(0.7,0.0,0.0))

= material (

surface :

material_surface (

scattering :

diffuse_reflection_bsdf (

tint : diffuse_color)));

Note here that MDL structs can have defaults for their members and that the example only

provides a value for the surface member of the material. All other members of the material

struct maintain their default values.

A similar syntax can be used to change the parameterization or interface of an already existing

material. The following example code creates a blue variant of the preceding example:

Listing 5.9

material blue_diffuse()

= diffuse (

diffuse_color : color(0.0,0.0,0.7));

A parameter of a material can be a material itself. Since a material functions as a struct, this

permits the straightforward reuse of materials. For example, the following material takes an

arbitrary base material and adds a reflective clear coat on top:

Listing 5.10

material add_clear_coat (

color ior = color(1.5),

material base)

= material(

volume : base.volume,

geometry : base.geometry,

surface :

material_surface (

emission : base.surface.emission,

scattering :

fresnel_layer (

layer : specular_bsdf (

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 18

5 Materials 5.3 MDL syntax

scatter_mode : scatter_reflect),

base : base.surface.scattering,

ior : ior)));

Measured materials are also defined in a syntactically consistent way in the material definition.

The following material defines the measured blue car paint that is combined with a glossy

reflection layer, shown. Note that the measured data is provided as a filename parameter of

function bsdf_measurement.

Listing 5.11

material carpaint_blue (

float coat_ior = 1.5)

= material (

surface :

material_surface (

scattering :

fresnel_layer (

layer : specular_bsdf (

mode : scatter_reflect,

tint : color(1.0)),

base : measured_bsdf (

measurement :

bsdf_measurement("carpaint_blue.mbsdf")),

ior : coat_ior)));

MDL provides a let-expression to support the introduction of local variables. The content of the

expression is purely declarative, but declarations are evaluated in sequence, allowing access to

already declared variables in later declarations. Using a let-expression, the add_clear_coat

example could be rewritten as:

Listing 5.12

material add_clear_coat (

color ior = color(1.5),

material base = material())

= let {

bsdf coat =

specular_bsdf (

scatter_mode : scatter_reflect);

bsdf coated_scattering =

fresnel_layer (

layer : coat,

base : base.surface.scattering,

ior : ior);

material_surface coated_surface (

emission : base.surface.emission,

scattering : coated_scattering);

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 19

5 Materials 5.3 MDL syntax

} in material (

volume : base.volume,

geometry : base.geometry,

surface : coated_surface);

Using let-expressions, libraries of materials can be based on a set of small, self-defined, reusable

building blocks. For example, putting a layer of rust on the surface of a painted car can be im-

plemented as the combination of two materials.

Listing 5.13

material rusty_carpaint(/* ... */)

= let {

material base = carpaint_material();

material top = rust_material();

float blend = rust_blend_function();

} in material (

surface :

material_surface (

scattering :

weighted_layer (

layer : top.surface.scattering,

base : base.surface.scattering,

weight : blend),

/* ... */));

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 20

6 Modules

Modules allow materials and functions to be packaged for re-use in independent libraries that

can be used together. Name conflicts can be avoided by choosing between unqualified and

qualified in module import statements.

MDL’s import mechanisms does not offer any name-conflict resolution mechanisms. The pur-

pose of this policy is to have a well-defined module system to enable packaging and re-use of

material libraries by independent providers.

A directory is considered a package. The name of the package is the name of the directory.

Note that this restricts the names of directories that are used as packages to legal identifiers.

Modules can be contained in packages and the resulting packages can be nested, allowing

comprehensive organization of complex libraries.

Extensions to core MDL, such as standard annotations and distribution, math, texture and

noise functions are provided in the form of standard modules.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 21

7 Functions

Users needing special texturing functionality are able to provide their own texturing functions

written in a C-inspired procedural language. Using this language, implementation of proce-

dural textures is possible as well as the implementation of custom uv-coordinate handling and

generation. Texturing functions have access to a limited, read-only rendering state dedicated

to the needs of texturing. Texturing functions are pure and free of side-effects. Together with

the dedicated texturing state, this makes texturing functions independent from the renderer

architecture, making it easier to use them in multiple renderers.

Function argument initialization can use other function calls, forming a call graph that is the

equivalent to shader graphs which are often provided by traditional shading languages.

MDL supports specification of default values for function parameters and a calling syntax

using named arguments to provide convenience when using texturing functions.

The following is an example of a function with default initializers:

Listing 7.1

float3 texture_lookup(float2 uv, int space = 0);

Calling function texture_lookup in another function body might be expressed as follows:

Listing 7.2

float3 c = texture_lookup(uv : coord);

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 22

8 Types

The type system of MDL is also inspired by the C language, with additional custom types for

domain-specific use, such as vectors and matrices. MDL also provides an abstract type for col-

ors, allowing renderers to choose their own, appropriate format for storing color information.

The struct type plays a major role in MDL’s material definition syntax. To allow convenient

handling of materials, struct types have an automatic constructor which, together with the

default values for struct members and the extended calling syntax for functions, allows the

relevant code to be short and precise.

Variables of an array type can be declared in two ways in MDL. The declarations differ in how

the size of the array is specified.

• In the size-immediate array type, the size of the array is given as a constant value when the

array variable is declared. This array type corresponds to the conventional array type in

the C language.

• In the size-deferred array type, the size of the array is given as a symbolic size identifier and

bound to a real size on first use. The size identifier can be used when the size of its array

is required in other expressions.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 23

9 Annotations

MDL defines a mechanism called annotations to associate meta-data with material definitions

and their components.

Annotations can be applied to:

• Functions

• Function input parameters

• Function return values

• Struct members

• Enumeration values

• Material definitions

• Material definition input parameters

Annotations are a standard mechanism for adding additional semantic information, such as

graphical interface specification, documentation data and other integration support, to a pro-

gram. MDL provides a set of standard annotations (defined in a standard MDL module) as

well as a syntax for users to add custom annotations. Syntactically, MDL annotations are in-

spired by the syntax of C# annotations.

© 2024 NVIDIA CorporationMaterial Definition Language ± Technical introduction 24

	Background
	Overview of key MDL features
	Comparing MDL to shading languages
	Language elements and re-use
	Materials
	Elemental distribution functions
	Bidirectional scattering distribution functions
	Emissive distribution functions
	Volume distribution functions
	Measured materials

	Distribution function modifiers and combiners
	MDL syntax

	Modules
	Functions
	Types
	Annotations

