
Material Definition Language
Technical introduction

19 July 2019

Version 1.2

Material Definition Language — Technical introduction

Copyright Information

© 2019 NVIDIA Corporation. All rights reserved.

Document build number 317500.3714

ii Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

Contents

1 Background . 1

2 Overview of key MDL features . 2

3 Comparing MDL to shading languages . 4

4 Language elements and re-use . 5

5 Materials . 6

5.1 Elemental distribution functions . 7

5.1.1 Bidirectional scattering distribution functions . 8

5.1.2 Emissive distribution functions . 11

5.1.3 Volume distribution functions . 13

5.1.4 Measured materials . 14

5.2 Distribution function modifiers and combiners . 16

5.3 MDL syntax . 19

6 Modules . 22

7 Functions . 23

8 Types . 24

9 Annotations . 25

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction iii

iv Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

1 Background

Renderers produce images from scene descriptions. A scene description consists of three-
dimensional geometric objects and their positioning in space. Common object representations
describe objects by their surface geometry, which sometimes only represent surfaces in space
and sometimes represent volumetric objects that are enclosed by the surface description.

Surfaces and volumes have material properties that determine how they interact with light
and, ultimately, how they are rendered in an image. Material properties range from the color
of surfaces, to their reflection or refraction properties, light emission of surfaces, scattering and
absorption properties of volumes, and even to additional geometric properties of surfaces,
such as cut-outs, displacements, or bump maps, which are commonly not modeled in the pri-
mary geometric description.

For greatest flexibility, rendering systems often use programming languages to describe ma-
terial properties. These can be general purpose languages, such as C, or domain specific lan-
guages, commonly referred to as shading languages, since material authors can program how
the actual shading of a surface is computed from material parameters, incoming light, and
more. Shader programmers can and do go to the extreme of writing full renderers in shader
programs. However, modern renderers can implement techniques such as multiple impor-
tance sampling only if they understand the material properties. This analysis is difficult with
traditional shading languages, since they define the computation for the shading result itself
and not just the material properties. Material Definition Language (MDL) is a domain-specific
programming language that can define material properties to serve modern renderers in this
sense.

This document gives you a functional overview of MDL. The next section provides a quick
overview of key features. The following sections provide more detail about those features.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 1

2 Overview of key MDL features

MDL consists of two major parts:

1. A declarative material definition based on a powerful material model

2. A procedural programming language to define functions that can compute values for the
parameters of the material model

The declarative material definition defines what to compute, not how to compute it, while
the procedural programming language preserves the infinite flexibility for creative material
authors to define material properties with their own programs.

Key features:

• MDL is independent of rendering algorithms. The declarative material definition inter-
faces with a renderer through the underlying material model, which is purely descriptive
in terms of physical material properties and agnostic of any renderer algorithm.

• MDL supports the needs of modern rendering algorithms with a well-defined material
model and enough material properties to support path tracing or multiple importance
sampling.

• MDL is supported across a series of renderers developed by NVIDIA and it is designed
to be extensible and adoptable by other renderers.

• Material definitions in MDL can be parameterized to enable flexible, custom-built domain-
specific material libraries.

• MDL has a well-defined module and package concept to support packaging and distri-
bution of material libraries.

• MDL supports the re-use and further customization of additional materials.

• MDL supports the customization of materials with predefined parameter sets, such that
a material library for a certain material family can be based on one generic material and
various parameter sets for specific instances of that material. When such a predefined pa-
rameter set is used, it can then still be modified to further adjust the look of the material.

• The renderer state and the standard modules defined by MDL enable material authors to
program a wide variety of functions to initialize material parameters, including procedu-
ral methods, noise-based textures, texture projection maps, and texture blend pipelines.

• MDL is designed for modern highly-parallel machine architectures. The procedural lan-
guage only allows the definition of pure functions that have access to rendering state
and that are free of side effects and global dependencies. These functions can therefore
be scheduled and executed depending on the needs of the renderer and machine archi-
tecture.

Although it emphasizes physically plausible materials, MDL supports traditional computer
graphics techniques that are important in conventional rendering and modeling workflows. A
MDL material is, in general, applied to a surface and consists of the following properties:

2 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

2 Overview of key MDL features

• Surface properties that describe the bidirectional scattering distribution function (BSDF) for
reflective and transmissive properties, the emissive distribution function (EDF) for emissive
properties and the radiant exitance for the amount of emission.

• A Boolean flag that specifies whether the surface encloses a volume, and thereby defines
if the volume properties apply to the enclosed volume or should be ignored.

• Additional surface properties that can be used to define the back-side material for sur-
faces that do not enclose a volume.

• Volume properties that describe the scattering and absorption coefficients and the volume
distribution function (VDF), also known as the volume phase function.

• Geometric properties that describe cut-outs, displacement mapping, and normal map-
ping.

• BSDF properties that are set to values composed from a fixed set of elemental BSDFs and
operators on them. These operators can be modifiers for tinting or thin-film effect, or they
can be combining functions for a weighted mix or layering of BSDFs including Fresnel
effects. The layering operator supports an additional normal mapping effect local to the
top image. These combinators make this a very flexible material model.

• EDF and VDF properties can be composed similar to BSDFs.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 3

3 Comparing MDL to shading languages

The use of conventional shading languages can be roughly categorized as follows:

1. They are used to implement functions to describe the spatial distribution of material
features — texture lookups, procedural textures, and projections.

2. They are used to provide re-usable building blocks, called shaders, that describe materials
with parameters that correspond to material properties, such as the reflective, emissive
and transmissive behavior of an object.

3. They are used to implement the computations needed in shaders, such as light-material
interactions or other algorithmic extensions of the renderer. Shaders may even imple-
ment full-scale rendering computations, such as volume renderers, particle renderers or
complete global illumination solutions.

While these areas are typically used by different audiences and require different user skills, tra-
ditional shading languages do not explicitly distinguish between these use cases. MDL clearly
separates those domains to address the specific needs of the different audiences.

In the three numbered areas above, the first corresponds to what MDL offers with its proce-
dural language for implementing functions. The second area corresponds to what MDL offers
with its material definition and rich, highly configurable material model. The third area has no
correspondence in MDL and is seen as the domain of the renderer.

4 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

4 Language elements and re-use

Functions, materials with their components, and modules are the main language elements that
MDL offers for material libraries and re-use.

Functions can be used individually for the parameters of a renderer, for example, the environ-
ment color, or to provide values for material parameters such as a texture lookup for a color
parameter for a material. Functions can also provide a mechanism for code re-use and data
hiding by encapsulating other functions. The encapsulated functions can be provided with ex-
plicit parameter values within the body of the encapsulating function. The resulting function
can implemented as a complex calculation with a simpler signature that provides control only
for those parameters significant for the intended effect.

Materials and their BSDF, EDF, and VDF properties are the main building blocks in MDL.
They can be passed to other materials as parameters, which allows the development of generic
materials that re-use aspects of a material and extend or change other aspects. For example,
a new material could be based on a generic material that takes another material as input and
changes it to a thin-walled material by applying the surface properties of the other material on
both sides of the surface.

A material definition can define input parameters that can be used within the material in ex-
pressions and function call parameters to initialize properties of the material model or of other
already existing materials. Parameterizing a material definition enables the encapsulation and
customization of materials to create custom material libraries.

MDL supports the customization of materials with predefined parameter sets, so that a ma-
terial library for a certain material family can be based on one generic material and various
parameter sets for specific instances of that material. When such a predefined parameter set is
used, it can then still be modified to further adjust the appearance of the material. For example,
a general metal material can be used with a family of parameter sets to offer a material library
of different gold and silver alloys. A user can pick a specific material from the library but still
modify the final color.

All files in MDL are defined to be modules. They define a namespace and shield identifiers
from name clashes, which is useful if material libraries are deployed and used together with
other libraries or further in-house material developments. Modules can contain materials,
functions, and related types and constants.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 5

5 Materials

MDL provides a purely declarative syntax for describing the interaction of an object with
light. It relies on predefined building blocks that can be efficiently implemented in a mod-
ern renderer, yet are powerful enough to describe a large majority of real-world materials. The
renderer-side interface of the material, the material model, is represented by a MDL built-in
structure-like type, which contains the different properties of the material:

Listing 5.1

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

uniform color ior = color(1.0);

material_volume volume = material_volume();

material_geometry geometry = material_geometry();

};

Depending on the building blocks used, three different kinds of materials can be distinguished:

1. Regular materials describing a surface that separates one volume from another

2. Thin-walled materials where the geometry only describes a soap-bubble like shell

3. Two-sided materials which also have the thin-walled property, but interact differently
with light hitting the geometry from the back side

The surface, emission, volume, and geometry aspects are also defined by built-in structure-like
types:

Listing 5.2

struct material_surface {

bsdf scattering = bsdf();

material_emission emission = material_emission();

};

Listing 5.3

struct material_emission {

edf emission = edf();

color intensity = color(0.0);

intensity_mode mode = intensity_radiant_exitance;

};

6 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.1 Elemental distribution functions 5 Materials

Listing 5.4

struct material_volume {

vdf scattering = vdf();

color absorption_coefficient = 0.0;

color scattering_coefficient = 0.0;

};

Listing 5.5

struct material_geometry {

float3 displacement = float3(0.0);

float cutout_opacity = 1.0;

float3 normal = state::normal();

};

5.1 Elemental distribution functions

To describe the interaction with light, MDL provides a set of elemental distribution functions. The
names of the distribution functions end with one of three suffixes:

bsdf

Describes the interaction of the light with the surface

edf

Describes the emissive properties of the surface

vdf

Describes the light distribution in the volume

The elemental distribution functions are used as components of materials. The following three
sections use these functions in minimal materials to demonstrate their visual properties.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 7

5 Materials 5.1 Elemental distribution functions

5.1.1 Bidirectional scattering distribution functions

The elemental BSDFs define the action of light at the surface of an object: how it is reflected
from the surface and transmitted through the surface.

Figure 5.1

diffuse_reflection_bsdf A colored diffuse
reflection component using roughness based
on the Oren-Nayar model. This BSDF also
implements pure Lambertian reflection.

Figure 5.2

diffuse_transmission_bsdf A colored
diffuse Lambertian transmission component.

8 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.1 Elemental distribution functions 5 Materials

Figure 5.3

specular_bsdf A component representing
colored specular reflection, specular
transmission (refraction) or a combination of
both. This image demonstrates pure specular
reflection.

Figure 5.4

specular_bsdf The use of the specular_bsdf

in this image demonstrates pure specular
transmission. The index of refraction is
controlled as a parameter to the BSDF.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 9

5 Materials 5.1 Elemental distribution functions

Figure 5.5

specular_bsdf This image combines both the
reflective and transmissive factors of
specular_bsdf. If transmission and reflection
are enabled at the same time, they are
combined using a Fresnel term based on the
index of refraction specified for the volume.
This image also demonstrates how the color
parameter of a distribution function can scale
the function’s result.

Figure 5.6

simple_glossy_bsdf A component
representing colored glossy reflection, glossy
transmission or a combination of both. As in
the specular case, if transmission and
reflection are enabled at the same time, they
are combined using the Fresnel term.

10 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.1 Elemental distribution functions 5 Materials

Figure 5.7

backscattering_glossy_reflection_bsdf A
colored glossy-reflection component capable
of simulating back-scattering of light.

5.1.2 Emissive distribution functions

MDL defines a set of elemental emission distribution functions to simulate the light that inter-
acts with MDL’s surface and volume definitions. The traditional computer graphics methods
of lighting a scene with special purpose constructs (like "directional lights" and "point lights")
is replaced in MDL by defining properties of geometric objects so that they emit light. In this
way, the syntactic expression of lighting is unified with the expression of surface and volume
appearance. As geometric objects, "lights" in MDL are also more readily integrated into the
scene definition interface of 3D applications.

Figure 5.8

diffuse_edf Light emitted in all directions
from the surface of the object, called
Lambertian light distribution by analogy to
Lambertian diffuse reflection. The spherical
geometric object defined with the emissive
material is visible in the image, but without
the typical perceptual or photograph effects
that provide "bloom" or lens distortions.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 11

5 Materials 5.1 Elemental distribution functions

Figure 5.9

spot_edf Distribution of the emission based
on the cosine between emission direction and
surface normal (exponential cosine
distribution). The emissive object is visible as a
dark gray sphere because the camera is located
at the edge of the cone of light distribution.

Figure 5.10

measured_edf Light distribution based on a
measured light profile. Arbitrary geometric
structure for light distribution from the
emissive object can be specified based on
standard industrial formats called light profiles.
Here the sharper boundary of the spatial
distribution of light energy allows the light
reflected by the diffuse surface of the object to
be seen as a reddish color in the shadowed
area.

12 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.1 Elemental distribution functions 5 Materials

5.1.3 Volume distribution functions

BSDFs define the action of light at the object’s surface. Volume distribution functions (VDFs)
specify the behavior of light within an object. In combination, they provide for all the possibil-
ities of light reflection, transmission, and interior modulation for lighting simulation.

Figure 5.11

anisotropic_vdf Addition of absorption
effects and subsurface scattering to the
material’s volume. The BSDF for this material
specifies that all light penetrates the object
(transmission scattering mode).

Figure 5.12

anisotropic_vdf Parametric control of the
volume distribution function can simulate a
wide variety of physical substances. The
material of this image only differs from the
material of the previous image in the BSDF
specifying both reflection and transmission of
the light, and in the values of three VDF
parameters that define the index of refraction,
the degree of scattering, and the scattering
direction within the object.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 13

5 Materials 5.1 Elemental distribution functions

Figure 5.13

anisotropic_vdf Even with apparently
simple materials made from the elemental
BSDFs, the design of the lighting simulation
can reveal complex properties of the material.
Here the material of the object,
anisotropic_vdf, is identical to the previous
example, lit by the emmisive distribution
function measured_edf of the previous section.

5.1.4 Measuredmaterials

The previous definitions of light transport used analytic methods which depend upon a math-
ematical theory of the physics of light. MDL also supports material definitions based on mea-
surement of real-world surfaces, where light interaction with objects is measured over a series
of different incident light and viewing angles. The resulting dataset is used as input to an
elemental BSDF in MDL that defines a measured BSDF.

A measurement dataset can be used as an MDL input parameter by constructing a value of
type bsdf_measurement. The bsdf_measurement constructor takes a file path of a measurement
dataset as an input argument:

Listing 5.6

bsdf_measurement(uniform string name)

A value of bsdf_measurement is used as the argument for the measurement parameter of the
BSDF measured_bsdf:

14 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.1 Elemental distribution functions 5 Materials

Listing 5.7

bsdf measured_bsdf (

uniform bsdf_measurement measurement,

uniform float multiplier = 1.0,

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Figure 5.14

measured_bsdf The red material is defined by
a measurement of a car paint surface. The
materials of the pedestal and ground are
defined by measurements of carpet and
cement, respectively. Accompanying texture
maps supply the level of fine color detail for
the carpet and cement.

Figure 5.15

measured_bsdf In this image the pedestal and
ground materials have been exchanged. The
geometric models define a parametric space
for the texture mapping, which is combined
with scaling factors for the texture application
provided by the material. The blue car paint
here uses the same material as the previous
example, with a different measured data set
provided as the value of the name parameter to
bsdf_measurement.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 15

5 Materials 5.2 Distribution function modifiers and combiners

5.2 Distribution function modifiers and combiners

The previous sections showed simple materials built from the elemental distribution func-
tions based on analytic methods and real-world measurements. MDL also provides building
blocks to combine or modify BSDFs to enable the description of more complex light-material
interactions. The elemental EDFs can also be mixed together to implement combined emission
properties in a single material.

Distribution function modifiers and combiners can describe complex reflective and transmis-
sive characteristics (compound distribution functions). Because of their uniform syntax, an-
alytic and measured materials can also be combined. Modifiers can be applied recursively,
allowing further modification and combination of compounds.

normalized_mix

Mix N elemental or compound distribution functions based on N float weights. If the
sum of the weights exceeds 1, they are normalized.

clamped_mix

Mix N elemental or compound distribution functions based on N float weights.
Distribution functions and weights are summed in the order they are given. When the
sum of weights reaches 1, the remainder, if any, is clamped.

weighted_layer

Add an elemental or compound BSDF as a layer on top of another elemental or
compound BSDF according to a weight w. The base is weighted with 1-w.

fresnel_layer

Add an elemental or compound BSDF as a layer on top of another elemental or
compound BSDF according to a weight w and a Fresnel term using a dedicated index of
refraction for the layer. The base is weighted with 1-(w*fresnel(ior)).

custom_curve_layer

Add an elemental or compound BSDF as a layer on top of another elemental or
compound BSDF according to a weight w and a Schlick-style directional-dependent
curve function. The base is weighted with 1-(w*curve()).

measured_curve_layer

Add an elemental or compound BSDF as a layer on top of another elemental or
compound BSDF according to a weight w and a directional-dependent measurement of
the reflection behavior. The base is weighted with 1-(w*measurement()).

tint

Tint the result of an elemental or compound distribution function with an additional
color.

thin_film

Add reflective thin film interference color to an elemental or compound BSDF.

directional_factor

A direction-dependent weight based on a custom curve that is applied to one elemental
or compound BSDF.

measured_curve_factor

A direction-dependent weight based on a measured reflection curve that is applied to one
elemental or compound BSDF.

16 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.2 Distribution function modifiers and combiners 5 Materials

The following series demonstrates the sequential combination of a series of BSDFs. Each suc-
cessive image adds a new layer to the previous one.

Fig. 5.16 – The base layer is defined by diffuse_reflection_bsdf with a tinting color of red.

Fig. 5.17 – A yellow-tinted diffuse_reflection_bsdf is added to the edges with
custom_curve_layer.

Fig. 5.18 – A layer of simple_glossy_bsdf is added using weighted_layer.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 17

5 Materials 5.2 Distribution function modifiers and combiners

Fig. 5.19 – Another layer of simple_glossy_bsdf with sharper highlights is added with
weighted_layer.

Fig. 5.20 – Adding a layer of specular_bsdf with fresnel_layer resembles the clear coat of an
automotive finish.

Analytic and measured materials can also be combined. Measurement devices for light scat-
tering may have difficulty accurately recording intensities at extreme grazing angles. For ex-
ample, the measured car paint renderings lack the glossy reflections that are typical at edges.
Defining this reflection as a layer to be combined with the measured BSDF can produce the
missing effect.

18 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.3 MDL syntax 5 Materials

Only using measurement data Adding edge reflection as a layer

Figure 5.21

5.3 MDL syntax

MDL provides a notation inspired by functional programming to create a custom material
struct and then map an input parameter set to this material. The following example describes a
simple material exhibiting Lambertian reflective properties and an input providing a diffuse_

color input defaulting to red:

Listing 5.8

material diffuse (

color diffuse_color = color(0.7,0.0,0.0))

= material (

surface :

material_surface (

scattering :

diffuse_reflection_bsdf (

tint : diffuse_color)));

Note here that MDL structs can have defaults for their members and that the example only
provides a value for the surface member of the material. All other members of the material
struct maintain their default values.

A similar syntax can be used to change the parameterization or interface of an already existing
material. The following example code creates a blue variant of the preceding example:

Listing 5.9

material blue_diffuse()

= diffuse (

diffuse_color : color(0.0,0.0,0.7));

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 19

5 Materials 5.3 MDL syntax

A parameter of a material can be a material itself. Since a material functions as a struct, this
permits the straightforward reuse of materials. For example, the following material takes an
arbitrary base material and adds a reflective clear coat on top:

Listing 5.10

material add_clear_coat (

color ior = color(1.5),

material base)

= material(

volume : base.volume,

geometry : base.geometry,

surface :

material_surface (

emission : base.surface.emission,

scattering :

fresnel_layer (

layer : specular_bsdf (

scatter_mode : scatter_reflect),

base : base.surface.scattering,

ior : ior)));

Measured materials are also defined in a syntactically consistent way in the material definition.
The following material defines the measured blue car paint that is combined with a glossy
reflection layer, shown. Note that the measured data is provided as a filename parameter of
function bsdf_measurement.

Listing 5.11

material carpaint_blue (

float coat_ior = 1.5)

= material (

surface :

material_surface (

scattering :

fresnel_layer (

layer : specular_bsdf (

mode : scatter_reflect,

tint : color(1.0)),

base : measured_bsdf (

measurement :

bsdf_measurement("carpaint_blue.mbsdf")),

ior : coat_ior)));

MDL provides a let-expression to support the introduction of local variables. The content of the
expression is purely declarative, but declarations are evaluated in sequence, allowing access
to already declared variables in later declarations. Using a let-expression, the add_clear_coat

example could be rewritten as:

20 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

5.3 MDL syntax 5 Materials

Listing 5.12

material add_clear_coat (

color ior = color(1.5),

material base = material())

= let {

bsdf coat =

specular_bsdf (

scatter_mode : scatter_reflect);

bsdf coated_scattering =

fresnel_layer (

layer : coat,

base : base.surface.scattering,

ior : ior);

material_surface coated_surface (

emission : base.surface.emission,

scattering : coated_scattering);

} in material (

volume : base.volume,

geometry : base.geometry,

surface : coated_surface);

Using let-expressions, libraries of materials can be based on a set of small, self-defined, reusable
building blocks. For example, putting a layer of rust on the surface of a painted car can be im-
plemented as the combination of two materials.

Listing 5.13

material rusty_carpaint(/* ... */)

= let {

material base = carpaint_material();

material top = rust_material();

float blend = rust_blend_function();

} in material (

surface :

material_surface (

scattering :

weighted_layer (

layer : top.surface.scattering,

base : base.surface.scattering,

weight : blend),

/* ... */));

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 21

6 Modules

Modules allow materials and functions to be packaged for re-use in independent libraries that
can be used together. Name conflicts can be avoided by choosing between unqualified and
qualified in module import statements.

MDL’s import mechanisms does not offer any name-conflict resolution mechanisms. The pur-
pose of this policy is to have a well-defined module system to enable packaging and re-use of
material libraries by independent providers.

A directory is considered a package. The name of the package is the name of the directory.
Note that this restricts the names of directories that are used as packages to legal identifiers.

Modules can be contained in packages and the resulting packages can be nested, allowing
comprehensive organization of complex libraries.

Extensions to core MDL, such as standard annotations and distribution, math, texture and
noise functions are provided in the form of standard modules.

22 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

7 Functions

Users needing special texturing functionality are able to provide their own texturing functions
written in a C-inspired procedural language. Using this language, implementation of proce-
dural textures is possible as well as the implementation of custom uv-coordinate handling and
generation. Texturing functions have access to a limited, read-only rendering state dedicated
to the needs of texturing. Texturing functions are pure and free of side-effects. Together with
the dedicated texturing state, this makes texturing functions independent from the renderer
architecture, making it easier to use them in multiple renderers.

Function argument initialization can use other function calls, forming a call graph that is the
equivalent to shader graphs which are often provided by traditional shading languages.

MDL supports specification of default values for function parameters and a calling syntax
using named arguments to provide convenience when using texturing functions.

The following is an example of a function with default initializers:

Listing 7.1

float3 texture_lookup(float2 uv, int space = 0);

Calling function texture_lookup in another function body might be expressed as follows:

Listing 7.2

float3 c = texture_lookup(uv : coord);

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 23

8 Types

The type system of MDL is also inspired by the C language, with additional custom types for
domain-specific use, such as vectors and matrices. MDL also provides an abstract type for col-
ors, allowing renderers to choose their own, appropriate format for storing color information.

The struct type plays a major role in MDL’s material definition syntax. To allow convenient
handling of materials, struct types have an automatic constructor which, together with the
default values for struct members and the extended calling syntax for functions, allows the
relevant code to be short and precise.

Variables of an array type can be declared in two ways in MDL. The declarations differ in how
the size of the array is specified.

• In the size-immediate array type, the size of the array is given as a constant value when the
array variable is declared. This array type corresponds to the conventional array type in
the C language.

• In the size-deferred array type, the size of the array is given as a symbolic size identifier
and bound to a real size on first use. The size identifier can be used when the size of its
array is required in other expressions.

24 Material Definition Language — Technical introduction © 2019 NVIDIA Corporation

9 Annotations

MDL defines a mechanism called annotations to associate meta-data with material definitions
and their components.

Annotations can be applied to:

• Functions

• Function input parameters

• Function return values

• Struct members

• Enumeration values

• Material definitions

• Material definition input parameters

Annotations are a standard mechanism for adding additional semantic information, such as
graphical interface specification, documentation data and other integration support, to a pro-
gram. MDL provides a set of standard annotations (defined in a standard MDL module) as well
as a syntax for users to add custom annotations. Syntactically, MDL annotations are inspired
by the syntax of C# annotations.

© 2019 NVIDIA Corporation Material Definition Language — Technical introduction 25

	Background
	Overview of key MDL features
	Comparing MDL to shading languages
	Language elements and re-use
	Materials
	Elemental distribution functions
	Bidirectional scattering distribution functions
	Emissive distribution functions
	Volume distribution functions
	Measured materials

	Distribution function modifiers and combiners
	MDL syntax

	Modules
	Functions
	Types
	Annotations

