<3

NVIDIA.

NVIDIA lray

Programmer’s Manual

3 October 2024
Version 2024.0.4

NVIDIA Iray — Programmer’s Manual

Copyright Information

(© 2024 NVIDIA Corporation. All rights reserved. Document build number rev377400.3959

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual ii

Contents

Preface
Purpose of thisdocument 1
Audience 1
How this document is organized 1
API symbols and namespaces 2

1 Getting started

1.1 Iray release components 3
1.2 Example programs 3
1.3 How tocompilea program 4
13.1 Contentsof therelease 4
1.32 Procedure 5
1.4 Howtorunaprogramttt 5
1.5 Starting and shutting downtheIray API 6
1.5.1 Loading and accessing the neuray library 6
152 Authenticating an application against the neuray library 7
153 Start-up and shutdown 7
154 Example —Start-up and shutdown o L 7
1.5.5 Example —Shared headerfile 8
1.6 Afirstimage 8
1.6.1 Configuration 8
1.6.2 Accessing thedatabase 9
1.6.3 Importingascenefile 9
1.6.4 Renderingascene................ 9
1.6.5 Example — Importing and rendering ascenefile 10

2 Library design

21 APImodules 11
22 Shared library 11
23 Namingconventions 12
24 Includefiles 12
24.1 Mainincludefiles 12
242 Sub-includefiles 13
2.5 Include file compile-time configuration, 13
2.5.1 Base API configuration options for assertions 13
2.5.2 Base API configuration options for STLuse 14
2.5.3 Math API configuration options for assertions 14

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual iii

254 Iray API Configuration options forassertions 15

26 Main APlaccesspoint 15
2.7 Version numbers and compatibility oo o 16
2.7.1 API Version of a shared library 16
2.7.2 Major and minor API product version 17
28 Interfaceso 17
29 Referencecounting 18
291 Example1 18
292 Example2 19
210 Handleclass 20
2101 Examplel 21
2102 Example2 21
211 ReSOUICESo 22
212 Strings 22
213 Errorhandling 22
2.14 Database, transactions and scopes o 23
2141 TransactiOns 24
2.14.2 Database scopes 24
215 Runtime configuration 25
2151 Logging configuration o 25
2152 Example - Configuring the Iray API 26
2.15.3 Threading configuration 26
2154 Memory configuration L 26
2155 Rendering configuration 27
2.15.6 Networking configuration 27
215.6.1 TCP/IPnetworking 28
215.6.2 Failurerecovery 28
2.15.6.3 Dynamic scheduling configurationchanges 28
2.15.64 Administrative HTTP server 28

3 Rendering 30
3.1 Rendering overview 30
32 Renderingand canvases 30
321 Progressreports 32
322 Abstractclasses 32
3.3 Rendermodeselection 33
34 Progressive renderingofascene L 34
3.4.1 Progressiverendering 34
342 Example — Progressively renderingascene 34
3.5 Sectionobjects 35
3.6 Instancing 35
3.6.1 User control of instancing 36
3.6.2 Increasing computational precision and accuracy 37

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual iv

3.7 Custom canvas class, 37

3.7.1 Customized rendering infrastructure 37
3.8 Asynchronousrendering 37
3.9 Multiplerender contexts 38
310 Denoising 38
3.10.1 Simple degraining filter o 39
3.10.2 Deep Learning-based Denoiser 40
3.11 Deep-learning-based SSIM predictor 41
3.11.1 Controlling the SSIM predictor 41
3.11.2 Progressinformation o 42
3.11.3 SSIM predictor performance 42
3.11.4 SSIM predictor limitations oL 43
312 Mattefog 43
4 Iray Photoreal 45
41 Introduction 45
42 Systemrequirements 45
43 Limitations 46
43.1 Resultcanvases 46
4.3.2 Support of light path expressions 46
433 Materials 47
434 Decals 47
435 Rendering 47
43.6 Picking 47
44 Matte objects and mattelights 48
441 Introduction 48
442 Attributes 48
443 Scene Option 49
444 Example 49
445 Additional notes and limitations 49
45 Ghostlights 50
4.6 Refractive objectsand IOR handling 51
4.6.1 Modeling Complex Refractive Objects 51
47 Progressiverendering 51
4.7.1 Progressive rendering modes, updates and termination 51
4.72 Convergence quality estimate 54
4.7.3 Deprecated attributes L 55
48 Spectralrendering 55
49 Causticsampler 57
410 Guided sampling 57
411 Motion vectors 58
412 Renderingoptions 59
4.13 Mixed mode rendering and load balancing 62
414 Timeoutprevention 63

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual v

415 Progress information 63

4.16 Global performance settings 64
5 Iray Interactive
51 Introduction 65
511 Purpose 65
512 KeyFeatures 65
52 Systemrequirements 66
53 Limitations 66
53.1 Resultcanvases 66
5.3.2 Materials 67
533 Rendering 67
53.4 Picking 68
5.3.5 Multi-GPU Configurations 68
53.6 Instancing 68
5.3.7 Fibers 68
53.8 Mixing GPUand CPUrendering 68
539 CPU fallback 68
54 Progressiverendering 68
5.4.1 Multi-GPU scalability and automatic sample count adaption 69
55 Lighting 70
5.6 Renderingoptions 70
5.6.1 Ambient occlusion and lighting 70
562 Indirectlighting 73
5.63 Shadows 73
5.64 Additional approximations o o o 75
5.6.5 Antialiasing and filtering oL L 76
5.6.6 Environment map resolution o L 77
56.7 Whitemode 77
5.7 Pathspacefiltering 77
5.8 Global performance settings L 78
59 Comparison with Iray Photoreal 79
Scene database
6.1 Overview of the scene database elements 80
6.1.1 Scene graphstructure 80
6.12 Leafnodes 80
6.1.3 MDL-related elements 81
6.14 Miscellaneous classes 81
6.2 Creating a scene programmatically 81
6.2.1 Comparison to scene filemain.mi 82
6.2.2 Order of scene element creation 82
6.2.3 Procedure for scene element creation 82
6.2.4 Editing scene topology 83

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual Vi

80

6.2.5 Categorizing sceneelements

6.2.6 Example — Creating a scene throughthe API

7 Geometry
7.1 Creating triangle meshes . ..
7.1.1 Creating a triangle mesh

712 Adding geometrytoascene....... i

7.1.3 Retrieving and editing trianglemeshes

7.14 Example - Using trianglemeshes

7.2 Creating polygon meshes . . .
721 Creating a polygon mesh

722 Tessellatingapolygonmesh

7.2.3 Example - Adding a polygonmeshtoascene

7.3 Creating on-demand meshes

7.3.1 Example - Using on-demand meshes

7.4 Creating subdivision surfaces
741 The controlmesh
742 Instancing objects

743 Example - Using subdivision surfaces

7.5 Creating free-form surfaces . .

751 Creating a free-formsurface

7.5.2 Adding free-form objectstoascene oL i

7.5.3 Example - Using free-form surfaces

7.6 Creating fibers
7.6.1 The geometry of a fiber .
7.6.2 The fiber control points .
7.6.3 The IFibers object

7.6.4 Adding a single fiber to the IFibers object

7.6.5 Example - Creating fibers
7.7 Creating particles
7.7.1 The geometry of particles
7.7.2 The IParticles object

7.7.3 Adding particles to the [Particlesobject
7.74 Example - Creating particles

7.8 Tessellation and displacement
7.8.1 Parametric tessellation . .
7.8.2 Length tessellation
7.8.3 Distance ratio tessellation
784 Displacement

8 Materials
8.1 Material Definition Language
8.1.1 Overview
8.1.2 Additional Information .

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual

Vii

8.1.3 Integrationinlray........... 98

8.1.4 Hair Materials and Fiber Geometry 99
8.1.5 Bump mapping energy loss compensation 99
82 Measured materials 100
8.2.1 Measured isotropic BSDF 100
822 Spatially varying BSDF 100
8.2.3 Measured reflectioncurve o L 101
824 Measured lightprofile 101
8.3 Editing and creating materials o oo L L 101
8.3.1 Modifying inputs of existing material instances 101
8.3.2 Creating new material instances 102
8.3.3 Attaching function calls to material inputs 102
8.3.4 Example — Using MDL materials and functions 103

9 Decals 104
9.1 Decalsceneelement 104
9.2 Placementofdecalsinspace 105
9.3 Layering and placement of decalsonobjects 108
9.4 Selectively enabling and disabling decals in the scene graph 108

10 Inhomogeneous volumes 110
10.1 Volumetric textures 110
10.1.1 Colorso 111
10.1.2 Density relativetosize 111
10.1.3 Interpolation 112
10.2 Inhomogeneous volumes as subsurface materials 112
10.3 Volumeobjects 114
10.3.1 Example - Creating a volumeobject 115
104 Emission 115
10.5 Restrictions 118
10.6 Atmosphericground fog L 118
10.6.1 Bestpractice 119

11 Sources of light 121
11.1 Concepts of light representationinIray 121
11.2 Emission distribution functions o o L 123
11.2.1 Types of emission distribution functions 124
11.3 Light distribution from scene elements 125
11.3.1 Pointand spotlights. 125
11.3.2 Directional lights 125
1133 Arealights 126
11.34 Light-emitting objects 126

12 Environment dome 127
12.1 Environment function 127

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual viii

12.2 Environment dome OPtioNS 128

123 Implicitground plane 129
13 Camera 132
13.1 Tonemapping 132

13.1.1 Photographic tonemapper 132
13.1.1.1 Exposurecontrol 133
13.1.1.2 Compression 133
13.1.1.3 Posteffects 135

13.1.2 Custom tonemapper 135

132 Bloom filter 136
133 Lens 136
134 Virtualbackplate 139
13,5 Motionblur 141

14 Physically plausible scene setup 142
14.1 Recommendations for geometry preparation 142

1411 Modeling glass 142

1412 Modeling volumes 145
14.1.2.1 Neighboring volumes 145
14.1.2.2 Enclosed volumes 147
14.1.2.3 Defining priorities 148

14.1.3 Mapping uv-coordinates 149

14.1.4 Tessellating curved surfaces 150

142 Recommendations forlights 152
14.2.1 Using photometriclights 153
14.2.2 Using environment and sunlight 153
14.3 Recommendations for materials o L L. 154
144 Recommendations for cameras oL 158
144.1 Depthoffield 158
15 Networking 159
15.1 Networking overview 159
152 Networkingmodes 159

1521 Nonetworking 160

1522 UDPmode 160

1523 TCPmode 160

1524 TCP mode with discovery 160

15.2.5 Example - Starting the APl in networkingmode 160

153 Iray Bridge 160

15.3.1 Network architecture 161

15.3.2 Clientintegration 161

15.3.3 Serverintegration 162

1534 Rendermodes 163

156.3.5 Upload progress 164

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual ix

15.3.6 Videomodes 165

15.3.6.1 Interactive Scheduler Modes 166
15.3.6.2 Batch SchedulerMode 167
15.3.7 Render contextoptions 167
15.3.7.1 Server configuration options 167
15.3.7.2 Video streaming options L. 167
15.3.7.3 Photoreal Cloud render mode options 170
15.3.7.4 1Q Cloud render mode options 170
15.3.7.5 Interactive Cloud render mode options 171
15.3.8 Server-sidedatacache 171
1539 Proxysceneelement 171
15.3.10 Scene snapshots 172
15.3.11 Example — Rendering a scene with Iray Bridge 172
15.3.11.1 Element Data Override Render Context Option 173

16 Server-based rendering 174
16.1 Example — Running an HTTP server 174
162 RTMP server 174
163 RTMP client 175
16.3.1 Example — Running an interactive video-streaming server 177

17 Customization 178
17.1 Extending the database with user-defined classes 178
17.1.1 Defining the interface of a user-defined class 178
17.1.2 Implementing a user-defined class 178
17.1.3 Example — A user-defined class 179
17.2 Extending neuray with plugins 179
1721 Implementingaplugin.......... 179
1722 Loadingaplugin 181
17.2.3 Example —Creatingaplugin 181
17.3 Extending supported file formats with plugins 181
17.3.1 Implementation of an importer 182
17.3.1.1 Implementing animporter, 182
17.3.1.2 Registering animporter 183
17.3.1.3 Example — Creating an importer for a custom file format 183
17.3.2 Implementation of anexporter 183
17.3.2.1 Implementinganexporter 183
17.3.22 Registering anexporter 184
17.3.2.3 Example — Creating an exporter for a custom file format 184
17.3.3 Example — Creating an image exporter for Photoshop 184
17.3.3.1 Implementing an image exporter 185
17.3.3.2 Using the PSD example exporter 186

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual X

18 Reference 187

18.1 Supported file formats and URIschemes 187
18.1.1 URIschemes 187
18.1.2 Scene file formats 188
18.1.3 The .axf material file format L L L. 188

18.1.3.1 Prerequisites before importing AxFfiles 189
18.1.3.2 Importing AxFfiles 189
18.1.3.3 Import resultsin the database 189
18.14 The mi_importer plugin 190
18.1.4.1 Importer configuration L. 190
18.1.5 Themi_exporterplugin 190
18.1.5.1 Exporter configuration L 190
18.1.6 Imagefileformats 191
18.1.7 Binary storage format o 192

182 Render targetcanvases 192
1821 CanvasNamesottt 199

18.3 Light path expressions 201
18.3.1 Introduction 201
1832 Events 201
1833 Handles 202
1834 Setsand exclusion L 202
18.3.5 Abbreviations 202
18.3.6 Constructing exXpressions i 202
18.3.7 Specialevents 203
18.3.8 Advanced operations i 204
18.3.9 Matte object interaction o i 204

18.3.10 LPEsforalphacontrol 205
18.3.11 Example LPEs 205
18.3.12 Summary of typical LPEs L 206
18.3.13 Light path expression grammar 207
19 Bibliography 208
20 Source code for examples 209

20.1 example_bridge client.cpp L 209

20.2 example_bridge_server.cpp 216

20.3 example_configuration.cpp 219

20.4 example_exporter.cpp ... 221

20.5 example_fibers.cpp 224

20.6 example_freeform_surface.cpp Ll 229

20.7 example_http_server.cpp 236

20.8 example_importer.cpp .. 240

209 example_mdlcpp 242

20.10 example_networking.cpp 257

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual xi

20.11 example_on_demand_mesh.cpp L 261

20.12 example_particles.cpp 266
20.13 example_plugins.cpp 271
20.14 example_polygon_mesh.cpp 273
20.15 example_progressive_rendering.cpp 280
20.16 example_psd_exporter.cpp 283
20.17 example_render_target_advanced.h oo L 294
20.18 example_rendering.cpp 297
20.19 example_rtmp_server.cpp .. 300
2020 example_rtmp_servermxml 308
20.21 example_rtmp_server_actionscript.as L. 309
2022 example_SCeNe.CPP 312
2023 example_shared.h 321
20.24 example_start_shutdown.cpp 325
20.25 example_subdivision_surface.cpp L 327
20.26 example_triangle mesh.cpp L L 332
20.27 example_user_defined_classes.cpp L 340
20.28 example_volumes.cpp 342
2029 imy_class.h 347
2030 my_classh 348
2031 plugineppo 350
20.32 vanilla_exporterh 352
20.33 vanilla_importerh o 360

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual i

Preface

Purpose of this document

This document is the companion for the NVIDIA Iray® API reference [Iray API] (page 208). This
document describes fundamental technical principles underlying NVIDIA Iray rendering
technology. References to neuray® in the documentation refer to the library of functions used
by Iray.

Audience

This document is intended for application and system developers who intend to integrate
NVIDIA Iray rendering technology in their applications. This document presumes advanced
programming skills in C++ and familiarity with 3D rendering concepts. No specialized
programming skills in rendering technology and networking are required.

How this document is organized

This document is organized as follows:

* “Getting started” (page 3) provides an overview of release contents, the example
programs, the steps to compile and run a program, and render an image. The example
programs are a good place to start if you prefer to learn by modifying working examples.

* “Library design” (page 11) provides an overview of neuray which is the library of
functions used by the Iray API, the configuration of the neuray library, and an overview
of the Iray scene database where all scene data is stored. It is recommended that you
refer back to this section as you explore the neuray library and gain a better
understanding of its capabilities.

Rendering (page 30) describes rendering concepts specific to Iray. “Iray Photoreal”
(page 45) and “Iray Interactive” (page 65) describe the Iray rendering modes. Explore
these sections in detail. They are key to understanding the capabilities of the Iray
rendering modes.

“Scene database” (page 80) provides brief descriptions and links to some of the more
important scene elements and describes how to create a scene programmatically.
“Geometry” (page 84), “Materials” (page 97), “Decals” (page 104), “Sources of light”
(page 121), “Environment dome” (page 127), and “Camera” (page 132) describe specific
scene elements in detail. Because Iray is a physically-plausible renderer, it is important
to understand how scenes should be set up to get the best results. Creating optimal
scene structures is covered in “Physically plausible scene setup” (page 142).

“Networking overview” (page 159) describes the networking support provided by Iray.
“Networking modes” (page 159) describes the supported networking modes, the
advantages and disadvantages of each, and their configuration. “Iray Bridge” (page 160)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 1

describes a client-server architecture that enables simple and efficient use of resources of
a remote cluster over a TCP/IP connection. “Server-based rendering” (page 174)
describes how to use HTTP and RTMP servers to deliver rendered images to a client.

* “Customization” (page 178) describes how to customize Iray with user-defined classes
and plugins.

APl symbols and namespaces

API symbols that are qualified by the mi: :neuraylib namespace are abbreviated; only the
unqualified symbol is displayed. In the HTML version of this document,' the API symbols
are links to their definition in the API documentation. The Links in color button in the
navigation bar at the top of the webpage will make linked symbols and phrases more visible.

1. https://raytracing-docs.nvidia.com/

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 2

https://raytracing-docs.nvidia.com/

1 Getting started

The intention of the following sections is to enable you to quickly get started using Iray. After
you finish this chapter, you should know how to:

* Test your Iray installation
¢ Start-up and shutdown the neuray library used by the Iray API

* Compile and run an example program that renders an image

1.1 Iray release components

The Iray release contains the following parts:

¢ Installation instructions.

* A platform-dependent shared library, 1ibneuray, that is used by the Iray API. The
supported platforms are Linux, macOS, and Windows.

* A set of platform-independent C++ include files.
* A library of documents that describe:
¢ The Iray API and how to use it.

* The Material Definition Language (MDL), the language that creates appearance
descriptions used by the renderer.

* Collections of:
* Example programs that illustrate key features of Iray and their implementation.
* Example materials created with MDL.
* Example textures.

* End user license agreement.

1.2 Example programs

The following example programs are shipped with the Iray release. They illustrate, in a
tutorial manner, the important interfaces and concepts. For compilation instructions, see
“How to compile a program” (page 4).

If your variant of the neuray library requires an authentication key you find the details of
how to use the key with the example programs in “Starting and shutting down the Iray API”

(page 6).

The example programs make use of a shared header file, example_shared.h (page 321),
which is explained in more detail in “Starting and shutting down the Iray AP1” (page 6).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 3

1.3

1.3.1

1 Getting started 1.3 How to compile a program

* Example — Start-up and shutdown (page 7)

* Example — Importing and rendering a scene file (page 10)

* Example — Configuring the Iray API (page 26)

* Example — Progressively rendering a scene (page 34)

* Example — Starting the API in networking mode (page 160)

* Example — Creating a scene through the API (page 83)

* Example — Using MDL materials and functions (page 103)

* Example — Using triangle meshes (page 85)

* Example — Adding a polygon mesh to a scene (page 86)

* Example — Using on-demand meshes (page 86)

* Example — Using subdivision surfaces (page 87)

* Example — Using free-form surfaces (page 88)

* Example — Creating fibers (page 91)

* Example — Creating particles (page 93)

* Example — Running an HTTP server (page 174)

* Example — Running an interactive video-streaming server (page 177)
* Example — A user-defined class (page 179)

* Example — Creating a plugin (page 181)

* Example — Creating an importer for a custom file format (page 183)
* Example — Creating an exporter for a custom file format (page 184)
* Example — Creating an image exporter for Photoshop (page 184)

* Example — Rendering a scene with Iray Bridge (page 172)

How to compile a program

This section describes how to compile the example programs shipped with Iray. For a
complete list of example programs see “Example programs” (page 3).

Contents of the release

The neuray library release contains a set of example programs. It is recommended that you
compile them and take them as a starting point for your own development.

The release contains a Makefile to build the examples on Linux and MacOS platforms as well
as solution files for Visual Studio 2012 to build the examples on a Microsoft Windows
platform.

You can integrate the neuray library easily in other build environments. You can even
compile the examples by hand following the steps below. Let the environment variable
SIRAY_ROOT refer to the installation root of the neuray library.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 4

1 Getting started 1.4 How to run a program

1.3.2 Procedure

To compile an example program:

1. Copy the examples shipped with the release, make them writable, and switch to that
directory:

cp -r SIRAY_ROOT/examples .
chmod -R u+w examples
cd examples

2. Compile the program with the appropriate include path switch that points the compiler
to the location of the neuray include files. A g++ compiler call could look like this:

g++ -ISIRAY_ROOT/include -c example_start_shutdown.cpp -o —
example_start_shutdown.o -pthread

3. Link the program with the library that provides dlopen(). A g++ linker call could look
like this:

g++ -0 example_start_shutdown example_start_shutdown.o -1dl -pthread

4. Make the shared library, also known as a DLL, known to your runtime system so that it
is found when starting the example program. You can do this by placing the shared
library in an appropriate location, and/or setting environment variables such as PATH
(on Windows), LD_LIBRARY_PATH (on Linux), or DYLD_LIBRARY_PATH and
DYLD_FRAMEWORK_PATH (on macQOS).

Note: This step is platform and installation dependent.

1.4 How to run a program

This section describes how to run the example programs shipped with Iray. For a complete list
of example programs see “Example programs” (page 3), and how to compile them (page 4).

The example programs that come with the neuray library release are programmed to run on a
command line. Some examples expect additional parameters and they will show a help
message in case parameters are missing.

Some programs use additional files or produce files in the directory as a result of their
processing.

Please refer to the comments in the example source code and the respective section that
describes an example for details.

The example programs report results as well as error messages on stdout and stderr to the
terminal where they are running. On Windows, the helper function keep_console_open()
prevents the terminal from closing when running with an attached debugger, for example,
when running within Visual Studio. This helper function is defined in the example_shared.h
(page 321) header file that is used throughout the examples.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 5

1.5

1.5.1

1 Getting started 1.5 Starting and shutting down the Iray API

Starting and shutting down the Iray API

This section introduces:

1. The neuray object (page 6), the access point for the system.
2. The required interfaces and methods:
* The INeuray (page 7) interface to start and shutdown the Iray APIL
* Function mi: :mi_factory (page 6) to create the neuray object.
* Function INeuray: :get_status (page 7) to query the status of the Iray APL

3. The program example_start_shutdown.cpp (page 7), which demonstrates how to start
up and shut down the Iray API

4. File example_shared.h (page 8), a shared example header file, which provides common
functionality for all example programs

To access the Iray API, you create a neuray object using a factory function. This object is your
only access point to the system. You use it to authenticate your application against the neuray
library, configure the system, start it up and shut it down. Only one instance of this object can
exist at any time.

When startup is completed, you can build scenes and initiate renderings. Before you can shut
down the Iray AP], all render jobs must be finished and all transactions must be closed.

See “Runtime configuration” (page 25) for available configurations and “Logging
configuration” (page 25) for an example configuring the log output.

Loading and accessing the neuray library

The factory function, which is used to create the neuray object, is a C function which returns
an interface pointer to the neuray object. This C function is the only exported global function
of the neuray library:

mi_factory()

This function has actually two parameters, one to configure a memory allocator and one to
guarantee the correct API version. Both parameters have default values and the examples use
this function without special arguments.

This allows you to easily use neuray as a shared library, which can be loaded on demand
without requiring to statically link an interface library to the application. The details of
loading a shared library on demand and calling this factory function are operating system
specific. Since this functionality is needed in all examples, it has been factored into a separate
convenience function, load_and_get_ineuray(), and placed in the shared header file
example_shared.h (page 8), described below.

In addition, this convenience function handles authentication and error situations with some
rudimentary reporting. This function can serve as a starting point for applications, but should
be reviewed and customized to the particular needs of an application where needed.

To unload the neuray library at the end of a program, you can use the unload() function
provided in the same header file.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 6

1.5.2

1.5.3

1 Getting started 1.5 Starting and shutting down the Iray API

Authenticating an application against the neuray library

The use of the neuray library requires a valid license. Depending on the license some
functionality might not be available. A missing or invalid license might cause rendered
images to show a watermark. The example programs will work without a license to the
extent that they might show the watermark in images or indicate with a message that
functionality is missing.

For most versions of the neuray library, an application needs to authenticate itself against the
neuray library that it is in the possession of a license. This authentication is also handled in
the load_and_get_ineuray() convenience function. For it to work, you need to place your
license key next to the example programs. The license key can come in one of two forms:

1. An authentication.h file, which you can drop as a replacement of the same file in the
examples source directory and recompile. This is also the recommended way for
applications to compile the license into the application.

2. An examples.lic file, which you can drop into the compiled example programs directory
and it will be picked up at runtime. This is only recommended for demo or otherwise
limited licenses.

After you have obtained successfully the neuray object and authenticated the application, you
can move on to configure the API if needed, which is skipped here, and finally start the Iray
APIL

Start-up and shutdown

The INeuray interface is used to start and shut down the Iray API. Most of the API can only
be used after it has been started (and before it has been shut down). Startup does not happen
during the mi_factory call because you might want to configure the behavior of the API,
which for certain configurations has to happen before startup. For details, see “Runtime
configuration” (page 25) and “Logging configuration” (page 25).

The status of the API can be queried using the INeuray: :get_status method.

Finally, you have to shut down the Iray API At this point, you should have released all
interface pointers (page 17) except the pointer to the main INeuray interface. If you are using
the Handle class (page 20), make sure that all handles have gone out of scope.

1.5.4 Example - Start-up and shutdown

Source code
example_start_shutdown.cpp (page 325)

This example program accesses the main neuray interface, queries the API interface version,
prints diagnostic information about the API interface version, API version and build version
string, and then starts and shuts down the neuray APIL The example illustrates also the
necessary places for error checking.

See also “How to compile a program” (page 4) and “How to run a program” (page 5).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 7

1 Getting started 1.6 A firstimage

1.5.5 Example — Shared header file

Source code
example_shared.h (page 321)

The shared example header file provides the following common functionality for all example
programs:

load_and_get_ineuray()

Described in “Loading and accessing the neuray library” (page 6)

unload()
Unloads the neuray library.

keep_console_open()

Prevents the terminal to close when the program is executed with an attached debugger
under Windows, most notably, from within Visual Studio. It is void on other platforms.

check_success(expr)

A macro, which, similar to an assertion, checks the conditional expression expr and exits
the program with a diagnostic message if this expression does not evaluate to true.

sleep_seconds(int seconds)

Waits for the indicated time.

snprintf()

Can be used across platforms without warnings.

1.6 A first image

This section introduces:

1. Core concepts about rendering images with Iray:
* Configuration (page 8)
* Accessing the database (page 9)
* Importing a scene file (page 9)
* Rendering a scene (page 9)

2. Example source code file example_rendering.cpp (page 10), which demonstrates how
to render an image with Iray.

To render a first image, you need to follow the steps explained in “Starting and shutting
down the Iray API” (page 6) to obtain the neuray object. Before actually starting the Iray API,
you configure it — in this example you provide the material search path and load plugins —
and after starting the Iray API you load the scene from a file into the database, render the
image, and write the result into an image file.

1.6.1 Configuration

The minimal configuration needed for this example is the search path setting and the plugin
loading.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 8

1 Getting started 1.6 A firstimage

When loading assets like textures or materials, Iray uses search paths to locate those assets,
This example imports .mi files (page 188), which reference MDL materials, written in the
NVIDIA Material Definition Language (MDL) (page 97). The search path to find those
materials is set here. For this example, the search path is actually provided as one of the input
parameters to the example program.

Iray makes itself use of plugins to provide different functionality. This example needs to load
the OpenlmagelO plugin to support various image formats, the .mi importer plugin to load
the scene in this file format, and the 1libiray plugin to render with the Iray Photoreal render
mode.

1.6.2 Accessing the database

The IDatabase interface is one of the central interface classes that become available once
neuray has been started. Using this interface, you can access the scene database (page 80). In
particular, you can either access the global scope (page 24) or create your own scope

(page 24). The IScope interface allows you to create transactions (page 24), which are
required for all operations that access the database.

This example uses the database interface to access the global scope and creates a transaction
in the global scope. All transactions need either to get committed or aborted. By committing a
transaction, all changes (if any) will become visible for subsequently started transactions.
Aborting a transaction discards any changes made in that transaction.

1.6.3 Importing a scene file

The import of files is handled by the API component IImport_api. The actual import is done
by the method IImport_api::import_elements(). The result of the import operation is
described by the interface IImport_result. This interface provides among other things the
method IImport_result::get_error_number() to retrieve the resulting error number. This
error number is 0 in case of success, all other numbers indicate failures.

The example also creates an instance of the IScene interface, which is later used for
rendering. To this end, the name of the root group, the camera, and the options are set in the
scene. These names are available from the import result.

1.6.4 Rendering a scene

Rendering a scene requires a render mode, which might require the loading of a corresponding
plugin, a render target and a render context.

A list of render modes with their plugin names and string value name, for the use with the
render context below, is shown here (page 33). For the example program below, the chosen
render mode is Iray Photoreal with the required 1ibiray plugin and the string value name
iray (all lowercase).

To render a scene, you have to provide a render target with space for the rendered images. In
principle, a single render call can render several images at once, each stored in a canvas.
Canvases have names and these names determine the actual images render, for example, the
final beauty pass result, alpha channel, depth or normal pass. The relevant API interfaces are
IRender_target, ICanvas, and ITile. However, the Iray API provides a default canvas class

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 9

1 Getting started 1.6 A firstimage

implementation, which is used in the example below. Furthermore, the implementation of a
render target has been factored into a separate header file, example_render_target_simple.h,
which is used across several examples. More details about customizing a render target of
canvas class can be found in the next section (page 10).

The render context can be obtained from IScene: :create_render_context(). Here, the
actual render mode (page 33) is selected with its string value name, which is iray in the
example program below.

1.6.5 Example - Importing and rendering a scene file

Source code
example_rendering.cpp (page 297)

This example program expands the example_start_shutdown.cpp (page 325) example
program and adds a configuration() and a rendering() function. The configuration()
function sets the MDL search path and loads the required plugin libraries. The rendering()
function goes through all the other steps described above; it imports a scene file, renders the
scene and writes the resulting image to disk.

This example program expects two command line arguments; the search path for the MDL
materials and the file name for the scene file.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 10

2 Library design

The following sections provide an introduction to the library design.

2.1 APl modules
The Iray API is based on and uses the Base API and the Math APIL
Base API

provides basic types, functions on them, assertions, and configurations.

Math API

provides vector, matrix, bbox, and color classes and math functions.

Iray API

is a rendering component that you can embed in your application to provide advanced
rendering functionality for your application. It includes an advanced distributed
database with incremental scene updates and scalable rendering on large distributed
clusters.

All three APIs use modules to structure their presentation in the reference documentation.

2.2 Shared library

The Iray APIis a C++ APL Its implementation is provided to you in the neuray library, which
is a dynamic library (a.k.a. shared library or DLL), named libneuray, with the usual
platform specific file extension.

The main benefits of the dynamic library are:

* You can link the neuray library to your application or dynamically load it on demand at
runtime without requiring to statically link an interface library to the application. This
can improve application startup time.

The Iray API follows conventional modern C++ library design principles for component
software to achieve binary compatibility and future extensibility across shared library
boundaries. The neuray library relies therefore only on the stable C ABI of a platform
and you can use a different compiler for the application then the compiler used for the
neuray library.

Iray API and ABI versioning allows the safe upgrade of the neuray shared library. For
details about when a recompilation is necessary and when not. see “Version numbers
and compatibility” (page 16).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 1

2 Library design 2.4 Include files

Note: The neuray system itself depends on other shared libraries. Several of those are
also only loaded on demand as plugins when needed. See IPlugin_configuration for
details and “A first image” (page 8) for an example.

2.3 Naming conventions

This section defines the terms Iray API and neuray and the naming conventions used by
neuray.

Product name
Iray API refers to the API shipped with Iray

Library name

neuray refers to the library of functions used by the Iray APL

The neuray library is written in C++. It uses the following naming conventions:

Symbol type Naming convention

Namespaces Use mi and mi: :neuraylib for neuray identifiers
Macro names Use MI_NEURAYLIB_ as a prefix

Identifier names Use _ to concatenate multiple words

Function names Written in lowercase only

Type and class names Start with one initial uppercase letter

Interface class names Start with an additional capital “I".

2.4 Include files

The Iray API offers two groups of include files. One group consists of the Main include
files while the other group consists of the Sub-include files.

Include files are self-contained. Internal dependencies are resolved automatically. As a
consequence, their inclusion is order independent.

2.4.1 Main include files

The Main include files provide the full functionality of their respective API. They do so by
including all necessary Sub-include files.

Main include file Description

mi/base.h Includes all Sub-include files of the Base API.
mi/math.h Includes mi/base.h and all sub-include files of the Math API.

mi/neuraylib.h Includes mi/base.h, mi/math.h and all sub-include files of the Iray APL
Simply including this header gives you access to all the functionality of the
Iray APL

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 12

2 Library design 2.5 Include file compile-time configuration

2.4.2 Sub-include files

The sub-include files provide individual parts of their respective API grouped by
functionality. If you include the respective main include file of an API, then there is no need
to include sub-include files of that API anymore and of those APlIs it relies on.

There may be include files that are not documented here. They are automatically included if
needed and their independent use is not supported. Their naming and organization might
change in the future.

See:

* Base API Include Files for the sub-include files of the Base API.
* Math API Include Files for the sub-include files of the Math APL
* Iray SDK API Include Files for the sub-include files of the Iray APL

2.5 Include file compile-time configuration

The Iray API offers a couple of options to configure the compile time behavior of the include
files. Since the Iray API is based on the Base API and Math API, their configuration options
are also relevant here. See:

* Base API configuration options for assertions (page 13)
* Base API configuration options for STL use (page 14)
* Math API configuration options for assertions (page 14)

* Iray API configuration options for assertions (page 15)

2.5.1 Base API configuration options for assertions

The Base API supports quality software development with assertions. They are contained in
various places in the Base API include files.

These tests are switched off by default to have the performance of a release build. To activate
the tests, you need to define the two macros mi: :base: :mi_base_assert and
mi::base::mi_base_assert_msg before including the relevant include files. Defining only
one of the two macros is considered an error. These macros and their parameters have the
following meaning:

mi::base::mi_base_assert(expr)
If expr evaluates to true this macro shall have no effect. If expr evaluates to false this
macro may print a diagnostic message and change the control flow of the program, such
as aborting the program or throwing an exception. But it may also have no effect at all,
for example if assertions are configured to be disabled.

mi::base::mi_base_assert_msg(msg)
Same behavior asmi: :base: :mi_base_assert, but the msg text string contains
additional diagnostic information that may be shown with a diagnostic message. Typical
usages would contain precondition or postcondition as clarifying context
information in the msg parameter.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 13

2 Library design 2.5 Include file compile-time configuration

See the documentation for mi: :base: :mi_base_assert in the Base API documentation.

2.5.2 Base API configuration options for STL use

The Base API makes occasional use of Standard Template Library (STL) headers, classes, and
functions. This behavior can be customized with the following macro:

MI_BASE_NO_STL
The Base API will not include any STL header and it will not use any STL classes not
functions. Instead it will add missing class and function definitions to its own
namespace, for example min and max function templates.

Note: The Base API still includes a few standard C++ headers, for example cstddef
and cmath.

The Base API locates classes and functions from the standard library in the namespace scope
MISTD. It is by default set as a namespace alias to point to the namespace std. This behavior
can be customized with the following macros:

MI_BASE_STD_NAMESPACE

This macro has to expand to a valid namespace scope that contains the standard library
classes and functions. It is used for the namespace alias MISTD instead of the default std.

MI_BASE_NO_MISTD_ALIAS

If this macro is defined, the namespace alias definition for MISTD is suppressed. This can
be used if the standard library classes and functions have been configured to live already
in the MISTD namespace.

2.5.3 Math API configuration options for assertions

The Math API configuration uses the Base API configuration.
See:

* Base API configuration options for assertions (page 13)

* Base API configuration options for STL use (page 14)
In particular, the Math API assertions are by default mapped to the Base API assertions.

The Math API supports quality software development with assertions. They are contained in
various places in the Math API include files.

These tests are mapped to corresponding Base API assertions by default, which in turn are
switched off by default to have the performance of a release build. To activate the tests, you
need to define the two macros mi_math_assert and mi_math_assert_msg before including
the relevant include files. Defining only one of the two macros is considered an error. These
macros and their parameters have the following meaning:

mi::math::mi_math_assert(expr)
If expr evaluates to true this macro shall have no effect. If expr evaluates to false this
macro may print a diagnostic message and change the control flow of the program, such

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 14

2 Library design 2.6 Main APl access point

as aborting the program or throwing an exception. But it may also have no effect at all,
for example if assertions are configured to be disabled.

mi::math::mi_math_assert_msg(msg)

Same behavior asmi: :math::mi_math_assert, but the msg text string contains
additional diagnostic information that may be shown with a diagnostic message. Typical
usages would contain precondition or postcondition as clarifying context
information in the msg parameter.

Seemi::math::mi_math_assertand mi: :base::mi_base_assert.

2.5.4 Iray API configuration options for assertions

The Iray API configuration uses the Base API configuration. In addition, the Math API
configuration is relevant for the Math API elements used in Iray. For more details, see:

* Base API configuration options for assertions (page 13)
* Base API configuration options for STL use (page 14)

* Math API configuration options for assertions (page 14)
By default, the Iray API assertions are mapped to the Base API assertions.

The Iray API supports quality software development with assertions. They are contained in
various places in the Iray API include files.

These tests are mapped to corresponding Base API assertions by default, which in turn are
switched off by default to have the performance of a release build. To activate the tests, you
need to define the two macros mi_neuray_assert and mi_neuray_assert_msg before
including the relevant include files. Defining only one of the two macros is considered an
error. These macros and their parameters have the following meaning:

mi_neuray_assert(expr)

If expr evaluates to true this macro shall have no effect. If expr evaluates to false this
macro may print a diagnostic message and change the control flow of the program, such
as aborting the program or throwing an exception. But it may also have no effect at all,
for example if assertions are configured to be disabled.

mi_neuray_assert_msg(msg)

Same behavior as mi_neuray_assert, but the msg text string contains additional diagnostic
information that may be shown with a diagnostic message. Typical usages would contain
precondition or postcondition as clarifying context information in the msg parameter.

See mi_neuray_assert and mi: :base::mi_base_assert.

2.6 Main APl access point

To access the Iray API, you create a neuray object using the mi: :mi_factory function:

Listing 2.1

mi::base::IInterface* mi::mi_factory(const mi::base::Uuid& iid);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 15

2 Library design 2.7 Version numbers and compatibility

This factory function is the only public access point to all algorithms and data structures in
the Iray library. It returns a pointer to an instance of the class identified by the given UUID.

The mi: :mi_factory function supports the following interfaces:

* An instance of the main INeuray interface, which is used to configure, to start up, to
operate and to shut down the Iray API. This interface can be requested only once.

* An instance of the IVersion class.

mi_factory allows you to easily use neuray as a shared library, which can be loaded on
demand without requiring to statically link an interface library to the application. The details
of loading a shared library on demand and calling this factory function are specific to the
operating system. Since this functionality is needed in all examples, it has been factored into a
separate convenience function, load_and_get_ineuray, and placed in the shared header file
example_shared.h (page 8) described in “Starting and shutting down the Iray AP1” (page 6).

For the underlying rationale of a single access function returning an interface pointer, see also
“Interfaces” (page 17).

Note: It is not required to use load_and_get_ineuray. In particular in larger setups
you might want to write your own code to load the neuray DSO and to locate the factory
function. In such cases, you call mi_factory directly. For simplicity, the examples will
use the convenience function load_and_get_ineuray instead of mi_factory

2.7 Version numbers and compatibility

2.7.1

There are several aspects of the API that may change over time. Version numbers are used to
document various kinds of compatibility between different versions.

API Version of a shared library

Assuming the API is provided in the form of a shared library (also known as DLL), you may
be able to upgrade the API to a new version without recompiling your application and also
without relinking your application, just by replacing the old shared library with a new one.
There might be API releases that contain only static libraries, or no libraries at all. In both
cases the discussion in this section does not apply to you.

The interoperability between your application and the shared library is versioned with the
API version number and the following protocol. In your application you ask the shared
library for a particular API version by passing the API version number as an argument to the
interface querying function mi: :mi_factory. The shared library then returns either an
interface that conforms to this version or, if this version is not supported, a value of NULL.

The API version refers to a particular collection of interfaces and their APIs. It is a single
integer number that increases over time. The current API version number is provided with
the symbolic name MI_NEURAYLIB_API_VERSION, which is the default argument to the

interface querying function.

The shared library always supports its own API version number and, if possible, older API
version numbers in order to support upgrades from an older shared library version to a
newer version. Older API versions of libraries with the same major product version number

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 16

2 Library design 2.9 Reference counting

(see next section) are always supported, while older API versions of libraries with a different
major API version are not guaranteed to be supported. Such support will be documented in
the Release Notes.

2.7.2 Major and minor API product version

The product version number for the API governs the compatibility on the source code level,
that is, the include files and to some extent on the binary level of the shared library. See the
previous section for details on binary compatibility.

Iray API has a product version number, which consists of three components: major version
number, minor version number, and version qualifier.

Major version number

Changes in the major version number indicate a disruptive change without guaranteeing
compatibility with prior versions. Details are documented in the Release Notes. See
MI_NEURAYLIB_VERSION_MA]JOR.

Minor version number

Changes in the minor version number, where the major version number remains
unchanged, indicate an upwards compatible change. Old sources compile without
changes. See MI_NEURAYLIB_VERSION_MINOR.

Version qualifier

A string that indicates special versions, such as alpha and beta releases. Final
end-customer releases have an empty version qualifier. The compatibility guarantees
described here are only given for end-customer releases and do not hold for new features
introduced in alpha or beta releases. See MI_NEURAYLIB_VERSION_QUALIFIER.

See also:

° Base API Version Numbers and Compatibility

° Math API Version Numbers and Compatibility

2.8 Interfaces

The Iray API follows conventional modern C++ library design principles for component
software to achieve binary compatibility across shared library boundaries and future
extensibility. The design provides access to the shared library through interfaces, abstract
base classes with pure virtual member functions. Parameters of those interface methods are
interface pointers or simple types and POD types, such as the math vector class.

The global function mi: :mi_factory returns the main interface INeuray that allows access to
the whole library. From this interface other interfaces of the library can be accessed with the
INeuray: :get_api_component member function.

See also “Reference counting” (page 18) and “Handle class” (page 20).

2.9 Reference counting

In neuraylib, interfaces (page 17) implement reference counting for life-time control.
Whenever a function returns a pointer to mi: :base: :IInterface or a subclass thereof, the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 17

2 Library design 2.9 Reference counting

corresponding reference counter has already been increased by 1. That is, you can use the
interface pointer without worrying whether the pointer is still valid. Whenever you do not
need an interface any longer, you have to release it by calling its release method. Omitting
such calls leads to memory leaks.

In more detail, the rules for reference counting are as follows:

* A method that returns an interface increments the reference count for the caller. The
caller needs to release the interface when it is done. See Example 1 (page 18), below.

* When a caller passes an interface as method argument the caller has to guarantee that
the interface is valid for the runtime of that method, and the callee can safely use the
interface for that time without the need to change the reference count.

If the callee wants to reference an interface passed as an argument later (typically via a
member variable) then it has to use reference counting to ensure that the interface
remains valid. See Example 2 (page 19), below.

The initial reference count after construction is 1. Methods returning an interface pointer
can therefore be implemented with:

return new Foo();

* Interfaces passed as out arguments of methods are treated similar to return values. The
callee decrements the reference count for the value passed in and increments it for the
value passed back.

See also “Handle class” (page 20).

2.9.1 Examplel

Assume there is an interface IFoo derived from mi: :base: :IInterface, and an API method
that creates instances of IFoo, for example,

Listing 2.2
class IFactory : public mi::base::Interface_declare...>
{
public:
virtual IFoox create_foo() = 9;
H

Let factory be an instance of IFactory. As described by the rules above the implementation
of create_foo() increments the reference count for the caller. When you are done with your
reference to the instance of IFoo, you need to decrement its reference count again via
mi::base::IInterface::release().

Listing 2.3

IFoo* foo = factory->create_foo();
// Use "foo"

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 18

2 Library design 2.9 Reference counting

foo->release();
// Must no longer use "foo" here

2.9.2 Example 2

Assume you want to implement the following interface.

Listing 2.4
class IRegistry : public mi::base::Interface_declare...>
{
public:
virtual void register_foo(IFoo* foo) = 0;
¥

Further assume that the implementation of IRegistry needs to reference the registered
instance of IFoo after the method register_foo() returned. This can be done as follows.
Checking foo and m_foo for NULL has been omitted for brevity.

Listing 2.5

class Registry_impl : public mi::base::Interface_implement<IRegistry>
{
public:
Registry_impl(IFoo* foo);
Registry_impl(const Registry_impl& other);
Registry_impl& operator=(const Registry_impl& rhs);
~Registry_impl();
void register_foo(IFoo* foo);
private:
IFoo*x m_foo;

¥
Registry_impl: :Registry_impl(IFoo* foo)
{
m_foo = foo;
m_foo->retain();
}

Registry_impl::Registry_impl(const Registry_impl& other)
: mi::base::Interface_implement<IRegistry>(other)

m_foo = other.m_foo;

m_foo->retain();

Registry_impl& Registry_impl::operator=(const Registry_impl& rhs)
{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 19

2 Library design 2.10 Handle class

mi::base::Interface_implement<IRegistry>::operator=(rhs);
m_foo->release();

m_foo = rhs.m_foo;

m_foo->retain();

return *this;

}
Registry_impl: :~Registry_impl()
{
m_foo->release();
}
void Registry_impl::register_foo(IFoo* foo)
{
m_foo->release();
m_foo = foo;
m_foo->retain();
}

As described by the rules above you need to increment and decrement the reference count of
the IFoo instance if you keep a reference that exceeds the lifetime of the called method.

Note: This example demonstrates the rules above for reference counting. We strongly
recommend not to call retain() and release() manually. See the variant of this example in
Handle class (page 20) which is simpler, obtain simpler, less error-prone and
exception-safe.

2.10 Handle class

To simplify keeping track of reference counting (page 18) and necessary release() calls on
interfaces (page 17), Iray offers a handle class, mi: :base: :Handle. This handle class
maintains a pointer semantic while supporting reference counting for interface pointers. For
example, the -> operator acts on the underlying interface pointer. The destructor calls
release() on the interface pointer, copy constructor and assignment operator take care of
retaining and releasing the interface pointer as necessary. Note that it is also possible to use
other handle class implementations, for example, std: :shared_ptr! (or

boost: :shared_ptr?).

The handle class has two different constructors to deal with ownership of the interface
pointer. See the mi: :base: :Handle documentation or the examples below for details.

It is also possible to use other handle class implementations, for example, std_shared_ptr
(or boost: :shared_ptr). In case you prefer to use such handle classes, you have to ensure
that their destructor calls the release() method of the interface pointer. This can be achieved
by passing an appropriate argument as second parameter, for example:

1. https://en.cppreference.com/w/cpp/memory/shared_ptr
2. https://www.boost.org/doc/1libs/1_68_06/1ibs/smart_ptr/doc/html/smart_ptr.html#shared_ptr

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 20

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://www.boost.org/doc/libs/1_68_0/libs/smart_ptr/doc/html/smart_ptr.html#shared_ptr

2 Library design 2.10 Handle class

std::shared_ptr p (
mi_neuray_factory(), std::mem_fun(&T::release));

2.10.1 Examplel

Assume there is an interface IFoo derived from mi: :base: :IInterface, and an API method
that creates instances of IFoo. For example:

Listing 2.6
class IFactory : public mi::base::Interface_declare...>
{
public:
virtual IFoox create_foo() = 0;
¥

Let factory be an instance of IFactory. As described by the rules in “Reference counting”
(page 18), the implementation of create_foo() increments the reference count for the caller.
Since the default constructor of mi: :base: :Handle leaves the reference count unchanged,
you can simply use it to capture the return value. The destructor or the reset() method of
mi: :base: :Handle decrement the reference count again via
mi::base::IInterface::release().

Listing 2.7

mi: :base: :Handle<IFoo> foo(factory->create_foo());

Using mi: :base: :Handle (or similar helper classes) instead of manually calling retain() and
release() is strongly recommended for exception-safe code.

2.10.2 Example 2

Assume you want to implement the following interface.

Listing 2.8
class IRegistry : public mi::base::Interface_declare...>
{
public:
virtual void register_foo(IFoo* foo) = 0;
i

Further assume that the implementation of IRegistry needs to reference the registered
instance of IFoo after the method register_foo() returned.

Listing 2.9

class Registry_impl : public mi::base::Interface_implement<IRegistry>

{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 21

2 Library design 2.13 Error handling

public:
Registry_impl(IFoo* foo0);
void register_foo(IFoo* foo);
private:
mi: :base: :Handle<IFoo> m_foo;

s

Registry_impl: :Registry_impl(IFoo* foo)
: m_foo(foo, mi::base::DUP_INTERFACE) { } Or: m_foo(make_handle_dup(foo))

void Registry_impl::register_foo(IFoo* foo)

{
Or: m_foo =mi: :base: :Handle<IFoo>(foo,

m_foo = make_handle_dup(foo); .0 0. hup TNTERFACE);

In this case you cannot use the default constructor of mi : :base : :Handle since you need to
increment the reference count as well. This is done by the constructor that takes

mi: :base: :DUP_INTERFACE as second argument. Alternatively, you can use the inline
function mi: :base: :make_handle_dup() which does that for you.

Note that the default implementation of the copy constructor, assignment operator, and
destructor of mi: :base: :Handle just do the right thing, and therefore, there is no need to
implement them for Registry_impl. Also NULL handling for foo and m_foo is for free.

2.11 Resources

In general, you should aim for minimal resource usage. This implies releasing interface
pointers as soon as you no longer need them. When using the mi: :base: :Handle class, it can
be beneficial to introduce additional ... blocks to enforce the destruction of the handle, and
release of the corresponding interface pointer, at the end of the block. Alternatively, you can
also call mi: :base: :Handle: :reset() or assign @ to the handle.

2.12 Strings

There is an interface mi: : IString representing strings. However, some methods return
constant strings as a pointer to const char for simplicity. These strings are managed by the
Iray API and you must not deallocate the memory pointed to by such a pointer. These
pointers are valid as long as the interface from which the pointer was obtained is valid.
Exceptions from this rule are documented with the corresponding method.

2.13 Error handling

Detecting failures depends on the particular method in question.

Some methods indicate their success or failure by an integral return value, for example,
INeuray: :start(), as already described in “Starting and shutting down the Iray API”
(page 6). The general rule is that 8 indicates success, and all other values indicate failure.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 22

2 Library design 2.14 Database, transactions and scopes

Methods returning interface pointers indicate failure by a NULL pointer. Therefore you should
check returned pointers for NULL. If you use the provided handle class, you can do so by
calling mi: :base::Handle::is_valid_interface().

Yet other methods report errors in more specialized ways, such as the importer methods on
the IImport_api interface, which return a IImport_result object to handle sophisticated
error reporting on file imports.

The program example_configuration.cpp (page 219) and subsequent examples use a
helper macro called check_success() to check for errors. If the condition is not true, the macro
prints an error message and exits.

Note: For production software, thorough error-handling needs to be done. Detailed
error-handling is omitted in the examples for simplicity.

2.14 Database, transactions and scopes

All Iray scene data is stored in the Iray scene database. The scene database is a distributed
key-value store which allows to store scene elements and retrieve them later when they are
needed. The keys are arbitrary strings, the value are instances of C++ classes. The fact that the
database is distributed means that data can be stored on any node in a cluster and retrieved
subsequently on any other node in the cluster.

The database is represented with the IDatabase interface in the APL It can be accessed
through the INeuray: :get_api_component() function.

Iray has been designed for multi-user operation and multiple operations running in parallel.
This is supported in the database with the concepts of “Transactions” (page 24) and
“Database scopes” (page 24).

You can create, retrieve and modify scene objects in the database, such as cameras, options,
groups, instances, objects, meshes, and functions. Any thread which has access to an open
transaction can at any time create and edit database objects. The database API is written to
support multi-threaded accesses. It is the applications responsibility to synchronize
concurrent changes to single database objects, though. It is also the applications responsibility
that concurrent changes from different threads result in an overall consistent database
content.

See also:

* “Scene database” (page 80) for the available scene database elements.

* “Creating a scene programmatically” (page 81) for an example of creating scene
database elements through the Iray APL

2.14.1 Transactions

The use of transactions allows to run multiple operations in parallel. Imagine a rendering is
running when a user starts to edit a scene and for example moves some geometry. If this
change would immediately affect the ongoing render operation then the resulting image
would be corrupt, because in some parts of the image the geometry would be still in the old
position and in some parts it would be in the new position.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 23

2 Library design 2.14 Database, transactions and scopes

To avoid this the Iray database uses transactions to provide a consistent view on the database
for the lifetime of a transaction. Before a rendering is started a new transaction is created and
all accesses and changes to the database are done through that transaction. Changes from
transactions which were not committed before the rendering transaction was started would
not be visible to that transaction. In databases this is known as the isolation property.

Additionally it is possible to commit or abort a transaction. If a transaction is committed, all
changes to the transaction become visible at the same time for all transactions that are created
after the commit. If the transaction is aborted, all changes in the transaction are automatically
abandoned and will not be visible for any other transactions. This is known as the Atomicity

property.

Transactions fully work on distributed clustered systems, and each of the nodes in a system is
able to start and commit transactions and use them for operations.

Note that the neuray database does not provide the durability property of conventional
databases. All storage is done to main memory for fast operation. In the case of memory
overusage, neuray can offload stored data to a disk. This is not meant to be done for
persistent storage. Using external code, you can write data to conventional databases or plain
files or read data from them.

Transactions are created from a scope (page 24), which in turn are created from the scene
database (page 80). A transaction is represented with the ITransaction interface in the APL

2.14.2 Database scopes

Transactions (page 24) enable multiple operations to run at the same time without affecting
each other. For multi-user operations a second concept is important: the database scope. A
scope is a container for database elements. Each database element is stored in a specific scope.
Scopes can be nested, each scopes can have an arbitrary number of child scopes and an
arbitrary number of database elements. Each scope except the “global” scope has exactly one
parent scope. In that aspect the database is analogous to a file system with directories and
files. A scope is analogous to a directory, while a database element corresponds to a file. The
“global” scope corresponds to the “root” directory of a file system.

Scopes allow to have different database elements stored using the same key. This can for
example be used to have different versions of the same database element for different users.
An example where this is useful is, if two different users would like to view the same model
of a car but have different colors on the paint. The usage of scopes is not limited to different
users, they can also be used to have different variants of a model and let a user switch
between them.

Each transaction is started within one specific scope. To carry the file system analogy further,
the scope in which a transaction is started corresponds to the current working directory in a
file system.

When some operation accesses a key for which multiple versions exist in different scopes the
database needs to decide which version to return. This is done by first looking inside the
current transaction’s scope. If the key is found there the database element stored in that scope
is returned. Otherwise the scope’s parent scope is searched for the key. This continues until

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 24

2 Library design 2.15 Runtime configuration

the “global” scope has been searched. If the key was not found in that scope the key does not
exist or is not accessible from the current transaction’s scope.

The sketched mechanism allows to overwrite a shared version of some scene element
individually for different scopes.

Scopes can be created and removed using API functions. Removing a scope will
automatically remove all contained scene elements.

Scopes are created from the scene database (page 80). A scope is represented with the IScope
interface in the API, which allows you to create transactions (page 24).

2.15 Runtime configuration

Iray does not use configuration files, command-line options or environment variables.
Instead all configuration is done by calling configuration functions on the neuray object. Most
configuration options need to be set before starting up the system but some can be adapted
dynamically. See the following sections for details.

The following configuration sections provide a short overview of the available configuration
options. See the corresponding Configuration Interfaces page for the complete set.

Note: Note that “Logging configuration” (page 25) contains an example program to
illustrate a configuration that most likely you want to do in your applications as well.

2.15.1 Logging configuration

The logging in neuray is done using an abstract C++ interface class with one member function
which is called by neuray whenever some part of the system needs to emit a log message. You
can provide a log object, which is an implementation of this abstract interface, and register it
with the Iray APIL Only one log object can be registered with a neuray process at any time.

In a multi-hosted system all log messages will be sent to an elected logging host. This host
will pass log messages from all hosts to its log object. You can influence the log election
process to favor a certain host.

Each log message will come with an associated log level and with a log category. You can
decide which log messages to report to the user. The method of the log object that you have
registered with the Iray API can be called at any time by any thread in the neuray system
including application threads which initiated operations in neuray. The log object must be
implemented to handle this concurrency properly.

You can configure a log verbosity level and neuray will pre-filter the log messages to avoid
the processor load associated with generating log messages which are never presented to the
user.

2.15.2 Example - Configuring the Iray API

Source code
example_configuration.cpp (page 219)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 25

2 Library design 2.15 Runtime configuration

This example demonstrates how to configure the logging behavior of neuray. You can
customize the logging behavior of neuray by providing your own logging object. This object
has to implement the mi: :base: :ILogger interface. A very minimal implementation that
prints all messages to stderr is shown in example_configuration.cpp (page 219). A
similar implementation is used by default if you do not provide your own implementation.

2.15.3 Threading configuration

The neuray system internally uses a thread pool to distribute the load among the processor
cores. The size of the thread pool is configurable. Additionally the number of threads which
can be active at any time can be configured up to the licensed number of cores

The number of active threads can be changed dynamically at runtime. This can be used to
balance the processor load against the embedding applications needs or other applications
needs on the same host. If you decrease the number of threads it may take a while until this
limitation will be enforced because running operations will not be aborted.

The application can use any number of threads to call into the Iray API. Those threads will
exist in addition to the threads in the thread pool. The neuray scheduling system will
however include those threads in the count of active threads and will limit the usage of
threads from the thread pool accordingly.

2.15.4 Memory configuration

You can configure a memory limit. The neuray system will try to keep its memory usage
below that limit. To achieve this it will flush data to disk. Objects can be flushed if the system
guarantees that other hosts in the network still have them or if they are the result of a job
execution which can be repeated.

neuray can be configured to use a swap directory to which it can flush out the contents of
database element. Those elements can then be dropped from memory if the memory limit
was exceeded. They will automatically be reloaded on demand when they are accessed again.

The memory limits can be adapted dynamically. If you decrease the memory limit neuray
will make a best effort to reduce the memory usage to the given amount. Actually enforcing
this limit may take a while and is not guaranteed to succeed.

You can configure neuray to use a custom allocator object provided by your application. The
allocator has to implement an abstract C++ interface class which exposes the functionality of
allocating and releasing memory blocks. It also allows one to inquire about the amount of
memory currently being used. Calls to the allocator object can be done from several threads at
the same time, including those threads from the application which are currently inside calls to
neuray. The allocator object must be implemented to handle this concurrency properly.

If the allocator cannot provide the memory requested by neuray it needs to signal this failure
by returning a 0 pointer. In that case neuray will try to flush memory to accommodate the
request and retry again. If this is not successful neuray will terminate and release the memory
it uses, but it cannot be guaranteed that all memory will be released. Additionally in that case
it is not possible to restart neuray without restarting the complete process.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 26

2 Library design 2.15 Runtime configuration

2.15.5 Rendering configuration

By default, rendering and related processes will use all elegible devices (CPU cores and
GPUs) in the system. Which devices are eligible will depend on factors like hardware
manufacturer, hardware generation, and driver.

Devices can be enabled or disabled per host or for an entire network cluster, per render mode
or globally, via the IRendering_configuration interface. Hosts with and without enabled
GPU rendering can freely be mixed in multi-hosted rendering. A device failure, e.g. lack of
memory or a hard runtime error, or loss of a host from the cluster, will not necessarily cause
rendering to stop. Renderers will generally attempt to continue rendering if at all possible,
though the ability to do this depends on a number of factors. If CPU rendering is disabled
(IRendering_configuration::get_resource_enabled(IRendering_
configuration::CPU,...) indicates false) but CPU fallback is enabled
(IRendering_configuration::get_cpu_fallback_enabled() returns true), rendering will
continue on the CPU once all available GPUs have failed.

You can configure the location of the directories where scene files, textures, and MDL
materials reside.

Rendering options which depend on the scene, such as trace depth etc., can be configured at
any time and per rendered image by editing the options object in the database.

2.15.6 Networking configuration

Networking can be done in different ways: UDP multicast and TCP unicast with or without
automatic host discovery are supported.

You can decide how to use the networking capabilities in your application. You can realize a
conventional master/slave configuration similar to mental ray with satellites where all scene
editing and rendering always initiates from the same host. In that scenario you would
typically write a small stub application which does the configuration and starts the system
and then waits until shutdown is requested. In the background the neuray system would
handle reception of data and would accept requests to do work and handle them.

But you are not restricted to this scenario with neuray. The neuray library allows all hosts to
edit the database and initiate rendering. You can use this to implement peer-to-peer
applications. It is up to your application to avoid conflicting changes in this scenario. To help
doing that the Iray API provides means for synchronizing changes to database objects for
example by locking objects.

UDP Multicast Networking: Using UDP multicast gives the best performance because data
can be sent once on a host but be received by many hosts in parallel. Additionally there is no
need to configure a host list so it is very easy to dynamically add and remove hosts. On the
downside using UDP multicast for high bandwidth transmissions is not supported by all
network switches and might require changes to the network infrastructure. For the UDP
multicast case a multicast address, a network interface and a port can be configured. A host
list is optional and acts as a filter which restricts the hosts which can join to the given list.

Hosts can be started dynamically and will automatically join without the need for
configuration. A callback object can be given to the neuray system which will be called when
hosts have been added to the network or when hosts have left the network.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 27

2 Library design 2.15 Runtime configuration

2.15.6.1 TCP/IP networking

Because multicasting with high bandwidth is not supported on all networks it is also possible
to use a more conventional scheme using TCP/IP networking, which is supported on
virtually all networks. In that case an address and port to listen on can be configured. A host
list is mandatory if the discovery mechanism is not used. Hosts can still be added to and
removed from the host list at any time using the Iray API provided that the necessary
redundancy level can be maintained (see below).

TCP/IP networking can be coupled with a host discovery mechanism, in which case an
additional address needs to be given. In case of a multicast address, multicast will only be
used to discover other hosts dynamically. In case of a unicast address, the host with the given
address acts as master during the discovery phase. In both cases, the actual data transmission
will be done using TCP/IP. Because this mode requires only low bandwidth multicasting it is
supported by most networks and can be used to simplify the configuration even if high
bandwidth multicast is not supported. Again a callback object can be given by the application
to allow the application to keep track of added and leaving hosts.

2.15.6.2 Failure recovery

A redundancy level can be configured up to a certain maximum. The redundancy level
configures how many copies of a certain database object will be kept at least on the network.
The neuray database guarantees that the system will continue working without data loss
even when hosts fail if the following preconditions are met: The number of hosts failing at the
same time must be less than the configured redundancy level and at least one host must
survive. After host failures or administrative removal of hosts the database will also
reestablish the redundancy level if the number of surviving hosts is high enough

2.15.6.3 Dynamic scheduling configuration changes

A neuray instance in a multi-hosted system can dynamically be configured to stop delegating
rendering work to other hosts, to stop accepting rendering work delegation from other hosts,
or to exclude the local hosts from rendering completely. This can be used to adapt the load on
systems to the current usage scenario

2.15.6.4 Administrative HTTP server

The neuray system has a built-in administrative HTTP server which can be started. This
server is not identical to the HTTP server framework which can be used to serve requests
from customers. The administrative HTTP server does not allow the execution of C++ code or
the rendering of images. It is meant to be used to monitor the system at runtime. You can
configure if this server is started (by default it is not started) and on which port and interface
it listens. The administrative HTTP server allows one to inspect aspects of the neuray
database and thus is useful for debugging integrations. Usually it would not be enabled in
customer builds.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 28

3 Rendering

The following sections describe general rendering concepts underlying the rendering
implementation in Iray.

3.1 Rendering overview

The neuray rendering system supports GPU rendering on qualified hardware as well as
software rendering using MDL materials. The available Iray render modes are “Iray
Photoreal” (page 45) and “Iray Interactive” (page 65).

You can render from different application threads at the same time using the same or a
different render mode and the same or different scenes or even different versions of the same
scene at the same time.

To render an image you start with a render context that you obtain by calling the
create_render_context() method of an IScene instance. The Scene object is a normal scene
database element that you create and edit through a transaction. You initialize the scene by
setting the root group, the camera instance, and the render options of the Scene object.

You can use the render context to render multiple frames. The rendered pixels will be written
to a render target object, which is an implementation of an abstract C++ interface class. You
can provide your application specific implementation of this interface class and pass it as a
pointer to one of the render functions of the render context. This concept allows you for
example to render to files, to render directly to the screen, or to render to textures. It also
allows you to do progressive rendering. An example for a render target implementation is
provided with the neuray release.

The render context is bound to one scene. You can use a render context to render from a
single thread. The render call will return after the full image has been rendered or after
rendering has been aborted. You can abort a rendering operation from a different thread
using the render context object. However, aborting might not necessarily be instantaneous.

3.2 Rendering and canvases

Rendering is the operation of creating a 2D image from a 3D scene. The 3D scene is the data
that is stored in the database.

For rendering, the scene data, in the form of a group node (the root group), needs to be
combined with a camera instance and an options object into an IScene object. A camera
instance and an options object are, for example, available in the IImport_result object
returned by scene imports.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 29

3 Rendering 3.2 Rendering and canvases

Rendering then happens in two steps; first you select a render mode by creating a render
context from the scene, and second you call one of the render methods on the render context.
The relevant methods are the following.

IRender_context* IScene::create_render_context(
ITransaction* transaction,
const char* renderer)

Returns a render context suitable for rendering the scene with a given render mode. See
“Render mode selection” (page 33) for available render modes.

int32 IRender_context::render(
ITransaction* transaction,
IRender_target_base* render_target_base,
IProgress_callback* progress_callback)

Renders the scene associated with this render context to the given render target
according to the passed in parameters using the render mode associated with the
context.

It is necessary to commit the transaction after calling this method before making any
changes in the scene database that should be taken into account in a future render call.
To the contrary, if no scene changes are necessary and future render calls are just used
for progressive refinements, in that case it is beneficial for the rendering performance to
use the same transactions for all progressive render calls.

This method returns when rendering is finished. The return value is non-negative if
rendering was successful, and negative if an error occurred or the render was canceled.
Progressive rendering returns one if the image is sufficiently refined according to the
chosen quality parameters and returns the same image as in the last call in this case.

Sint32 IRender_context::render_async(
ITransaction* transaction,
IRender_target_base* render_target_base,
IReady_callback* ready_callback,
IProgress_callback* progress_callback)

Renders the scene associated with this render context to the given render target
according to the passed in parameters using the render mode associated with the
context.

It is necessary to commit the transaction after calling this method before making any
changes in the scene database that should be taken into account in a future render call.
To the contrary, if no scene changes are necessary and future render calls are just used
for progressive refinements, in that case it is beneficial for the rendering performance to
use the same transactions for all progressive render calls.

In contrast to the IRender_context::render call this call will return immediately while
the rendering continues. The ready_callback is called when rendering is finished.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 30

3 Rendering 3.2 Rendering and canvases

3.2.1 Progress reports

To obtain information on how a rendering is progressing, you can pass an instance of
IProgress_callback to a render call. The callback’s member function may be invoked at
various stages in the loading and rendering process and from various threads. Note that
performing expensive operations in the callback thread may block rendering from
progressing further.

The exact calls to this interface are subject to change without notice between releases and may
depend on various combinations of options and other settings. Renderers will make a best
effort to consistently provide the progress information in the following areas:

iteration

Total number of samples rendered so far. The value parameter to the callback reflects the
number of samples per pixel.

canvas_update

Indicates that the application’s IRender_target canvas was written. This may happen
during progressive rendering, or only once all rendering has completed, depending on
the current scheduling modes. In progressive rendering modes, it is safe to read the
canvas during this callback, i.e., the renderer will not modify the canvas while reporting
this progress area.

3.2.2 Abstract classes

The IRender_target class together with its related ICanvas and ITile classes are abstract
interfaces which have to be implemented by the application which uses this API to render.
This gives the application the ability to tailor the rendering process very specific to its needs.
For a simple example implementation of these interfaces, see “A first image” (page 8). Also
note that default implementations of ICanvas and ICanvas_cuda are available from the
IImage_api interface.

The IRender_target class contains the canvases into which the render mode renders its
results. The data written to a canvas is determined through the

IRender_target_base: :get_canvas_type() and
IRender_target_base::get_canvas_parameters() member functions. The list of supported
canvas types and parameters is documented in “Render target canvases” (page 192).

Given a rendering result in an ICanvas implementation, you can conveniently store it in an
image format to disc or convert it to an image format in a memory buffer ready to be stored,
encode it and give it to the video streaming server or send it as an answer to an HTTP request.

Sint32 IExport_api::export_canvas(
const char* uri transaction,
const ICanvas* canvas,

Uint32 quality)

Exports a canvas, for example, to an image file on disk.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 31

3 Rendering 3.3 Render mode selection

See “Scene file formats” (page 188) for the URI naming conventions supported for the
uri parameter and “Image file formats” (page 191) for the available image formats and
the quality parameter.

IBuffer* IImage_api::create_buffer_from_canvas(
const ICanvas* canvas,
const char* image_format,
const char* pixel_type,
const charx quality)

Converts a canvas into an image file format and returns it in a buffer. See “Image file
formats” (page 191) for the available image formats and the quality parameter.

3.3 Render mode selection

The value assigned to the render_mode parameter of the
IScene::create_render_context() method sets the render mode used to generate images.

Certain render modes are only available if their corresponding plugin is loaded. See the
IPlugin_configuration interface for methods to load plugins.

The following table lists the possible string values that can be assigned to the renderer
parameter, the required plugin, and the purpose of each render mode:

String value Plugin name Purpose of render mode

irt libirt “Iray Interactive” (page 65), a ray tracer with a focus on
interactivity and editing.
Iray Interactive is an interactive raytracing render mode which
uses faster yet less accurate rendering algorithms than Iray
Photoreal. Iray Interactive targets a look which is consistent with
the physically based result of Iray Photoreal, yet it is optimized
for interactive scene manipulations. Iray Interactive leverages
NVIDIA CUDA-capable GPUs. It is ideal where ray-tracing
effects, such as reflections and refraction, are desired and limited
photorealism is acceptable.

iray libiray “Iray Photoreal” (page 45), a production-final renderer with full
global-illumination support.
Iray Photoreal is an interactive, ray-traced renderer that generates
“push-button” photorealistic imagery featuring complex global
illumination effects. Iray Photoreal makes use of a highly
optimized BSDF and EDF shading framework, essentially
simulating the physical behavior of real-world material and light
sources. Iray Photoreal can leverage NVIDIA CUDA capable
GPUs to render photorealistic images in a short amount of time.
If a system does not have CUDA capable graphics cards it will
automatically fall back to CPU based rendering, unless the
iray_cpu_support restriction is set to false.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 32

3 Rendering 3.5 Section objects

3.4 Progressive rendering of a scene

This section introduces:

* Progressive rendering (page 34), which explains what progressive rendering is and
when to use it.

* example_progressive_rendering.cpp (page 280), which demonstrates how to set up
progressive rendering for a render context.

3.4.1 Progressive rendering

Progressive rendering is intended to provide users with fast feedback. The initial render call
generates a somewhat low quality frame. Subsequent render calls refine the image
incrementally.

Each frame generated by a progressive rendering operation is exported to a file. Displaying
all files in sequence shows the incremental refinement of the image. On Linux, you can view
this progression using the animate command from ImageMagick software:

animate -delay 10 ‘\ls -1 example_progressive_rendering_*.png’

Several termination criteria determine when a progressive rendering operation is considered
finished. The progressive rendering operation is restarted, for example, when the camera
position changes or changes are made to the scene that would be visible in the rendered
image. On the other hand, progressive rendering ends when the image resolution of the last
rendered frame satisfies the image resolution criterion.

See Progressive rendering (page 51) in Iray Photoreal and Progressive rendering (page 68) in
Iray Interactive for detailed information about progressive rendering options supported by
the respective rendering modes.

3.4.2 Example - Progressively rendering a scene

Source code
example_progressive_rendering.cpp (page 280)

The example for progressive rendering is a modification of the example program used in “A
first image” (page 8), “Accessing the database” (page 9), and “Importing a scene file” (page 9).

Note the following;:
* The interactive scheduling mode (default mode) is used.

* The rendering logic has one modification: A loop is used to repeatedly call the render()
method.

* A custom canvas class is used, whose implementation you can see in “Custom canvas
class” (page 37).
3.5 Section objects

Objects in the scene may be sliced open by placing section objects in the scene. Section objects
are modeled by the ISection_object interface. Section objects remove all objects on its front

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 33

3 Rendering 3.6 Instancing

or outside from the scene. For example, placing a section plane at the origin with its normal
pointing upwards will remove everything above zero altitude.

By default, the effect of introducing section objects is similar to removing clipped geometry
from the scene entirely. This means that areas which were previously in shadow may now
receive light because occluders were clipped away. This behavior may be controlled through
the ISection_object::set_clip_light function.

If desired, sections may be closed with caps. If this mode is enabled, solid areas that were cut
open by a section object are closed with a virtual surface. Note that the normal orientation
will be used to determine which parts of an object to cap and that shading and geometry
normals must be oriented in a consistent fashion. As a consequence, nested objects will only
be capped correctly if the outer object has a cavity (normals facing inwards) which then
contains the inner object (normals facing outwards). Engineering models and geometry with
a similar focus on fidelity are generally modeled in a suitable manner.

Also note that objects will not be capped correctly if the implicit environment ground plane
runs through them.

The capping feature is controlled by the following attributes on the I0ptions class:

bool section_caps_enabled = false

Enables capping of clipped geometry as described above.

mi::Color section_caps_color = mi::Color(0.72f, 0.1f, @.05f, 1.0f)

Controls the diffuse color of the material that is applied to section caps. This color may
be overridden per section plane via ISection_object::set_cap_color.

Another possibility to color the section of a cut object is to use subsurface scattering. Like
caps this relies on the normal orientation to distinguish inner and outer parts. An object that
already has subsurface scattering will look as if rays started directly inside the medium.
However, you can also set volumetric attributes for otherwise solid materials. These
attributes will never be used while the object is closed, but can be used to stir the look when
cut open. To achieve a solid, colored appearance it is best to set a very large coefficient with
an albedo of the desired color. This may also be used in combination with subsurface
inhomogeneous volumes : (page 112).

3.6 Instancing

Iray supports two ways of handling scene geometry: flattening and instancing. Several
modes are available to control how and which geometry is instanced. The choice of mode is
controlled by the following attribute on the IOptions class:

mi::IString iray_instancing
Controls the instancing mode in Iray, which can be one of the following values, where
"off" is the default:

"off"

If instancing is disabled (the default), all scene geometry is flattened into a single
memory block. Geometry that is instanced multiple times in the scene will be
duplicated. This mode almost always leads to higher memory use than using
instancing "on", but often yields higher rendering performance.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 34

3 Rendering 3.6 Instancing

on

If instancing is enabled, all instanced geometry will only exist once, so input scene
instances will also be instances in the rendering core. This may yield a significantly
lower memory footprint, but may incur significant runtime costs, especially if the
geometric extent of the instances overlap. Iray will also apply incremental object
transform updates when instancing is enabled. This mode significantly reduces the
scene preprocessing runtime overhead when moving objects around dynamically.

"user"

Without further intervention, this mode behaves like the "off" mode. This mode
allows for fine-grained control over what is instanced and what is flattened. Scene
elements like objects, groups, and instances can be tagged for instancing, as
explained in the following section. Iray will also apply incremental instance
transform updates when user instancing is enabled. This mode significantly reduces
the scene preprocessing runtime overhead when moving around (flattened)
instances.

"aUtO"

If instancing is set to auto mode, Iray will automatically detect and decide which
objects to instance, in order to reduce the memory footprint and speed up object
transform updates. Input scene instances will usually be all instanced in the
rendering core, unless there is a significant downside for memory or performance.
This mode may significantly reduce the scene preprocessing runtime overhead when
repeatedly changing the transformation of a group or (flattened) instance. In
addition, this mode responds to the same controls as the user mode.

3.6.1 User control of instancing

In the user and auto modes of instancing, instancing can be controlled with the following
attribute on the IAttribute_set class, which can be set on lights, objects, groups, and
instances in the scene graph:

bool movable = false

If set to true, the respective node is marked for instancing.

If a group is marked for instancing, all of its contents will remain as one block, and that
block will be instanced as per the scene graph. If the group contains multiple instances of
some geometry, that geometry will be duplicated accordingly.

If an instance is marked for instancing, only this copy will be broken out. All remaining
instances will still be flattened together. This is useful for cases where a few instances
should be instanced but instancing all copies is not desirable.

It is generally most useful to mark groups for instancing. For example, consider a scene
with two instances of a car. By default, all geometry (that is, two full cars) will be
flattened into one big block. Marking the car group as movable will result in two
instances of on car geometry (close to 50Further marking the left door group as movable
will yield a scene with four instances and two geometry blobs: two instances each of a
door and a car minus a door.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 35

3 Rendering 3.8 Asynchronous rendering

3.6.2 Increasing computational precision and accuracy

i

When instancing mode is set to “on”, “auto” or “user”, the scene is automatically shifted in
space. This increases the precision and accuracy of rendering computations and reduces
precision artifacts that originate from self-intersection. To disable this behavior, set

bool instancing_shift_camera to “false”.

It is also possible to force an update of the scene shifting by calling the API method
IScene::set_dirty at the beginning of a frame with a flag value that marks the instance
transforms as dirty. This is recommended if the camera was moved a long distance (like when
rendering new frames of an animation, or the user interactively changing it over time), as
there is no automatic update of the shifting in order to avoid unexpected stutter through
scene updates when moving the camera.

3.7 Custom canvas class

This section introduces:

* The header file example_render_target_advanced.h (page 294), which demonstrates
how to set up a custom rendering infrastructure when the default rendering
infrastructure is not sufficient for your needs.

3.7.1 Customized rendering infrastructure

Source code
example_render_target_advanced.h (page 294)

To render a scene, you have to provide some rendering infrastructure for the Iray APL
Basically, you have to provide buffers where the rendered image is written to. These buffers
are defined by the interfaces IRender_target, ICanvas, and ITile.

Most of the example programs shipped with Iray use internal default implementations.
However, the example for progressive rendering (page 34) demonstrates an advanced way of
providing the required rendering infrastructure by using custom implementations of the
interfaces ICanvas and ITile and the corresponding classes Canvas and Tile. These
advanced implementations are defined in this section’s example source code.

For simplicity, the only supported pixel type is Color, that is, one floatfloat per channel.
You can see the canvas class in use in:

* Progressive rendering of a scene (page 34)

3.8 Asynchronous rendering

When using neuray, an application uses a render context for doing the actual rendering. A
render context allows you to call the render() function. That call will initiate rendering and
will not return before the rendering is done and an image was generated and stored for all
requested render targets. You can give an optional callback function which reports about the
progress of the rendering and may be called before the call to render() returns.

Especially for interactive applications, the blocking behavior of the render call can be
inconvenient, because the application can not react to user events during the time of the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 36

3 Rendering 3.10 Denoising

rendering. For that reason the render context class offers an additional function named
render_async(). When your application calls that function, the rendering will be initiated as in
the render() function. But in contrast to that function, the call will return immediately without
waiting for any result. Rendering will proceed in the background and your application can
do other things during that time. To enable your application to find out, when the rendering
is finished, you should give an additional callback function to the render_async() function
callback, the ready_callback. That callback will be called when the rendering is finished.

Note, that it is important that you do not commit or abort the transaction as long as the
asynchronous rendering is running. Otherwise, the rendering will be canceled immediately.
In that case the result of the rendering so far would be discarded.

Note also, that neuray and all its renderers are fully multi-threading safe. That means as an
alternative to using render_async(), you can create additional render threads in your
application which then call the blocking render() function. Other application threads can still
react to user input and other events. The effect with this approach would be very similar to
using the render_async() function.

3.9 Multiple render contexts

Iray has core support for storing multiple scenes at the same time. Your application can use
this for example to render a main scene and in addition render swatches for the available
materials and update those swatches whenever the materials change. Many other use cases
for this feature are conceivable.

In addition to multiple scenes, Iray also supports multiple render modes, and in fact comes
with different render modes featuring different quality and speed properties (like “Iray
Photoreal” (page 45) and “Iray Interactive” (page 65)). As an application for this feature, you
can for example choose one render mode for rendering during navigation and use a different
render mode for rendering out a final image. It is also possible to blend between images
generated by the different render modes.

To enable the efficient use of those features, Iray allows you to have many render contexts at
the same time. Each render context can be used to render a specific scene with a specific
render mode. You can switch very fast between scenes or render modes by using the render()
function on one render context and when rendering is finished call render() on a second
render context. In fact, it is also possible to call render() on a render context, while rendering
is still active on other render contexts. Depending on the resource needs, the involved render
modes, and the available resources, the rendering may in that case proceed in parallel, thus
making more efficient use of the hardware resources.

3.10 Denoising

Iray Photoreal and Iray Interactive include two separate methods to reduce noise in
generated images. One can select between a simple degraining filter and a Deep
Learning-based denoising filter that operates as a post-process on the rendered image and
uses additional data from the renderer to guide denoising. While the classic degraining filter
can provide a moderate improvement in perceived image quality, the Deep Learning-based
denoiser typically provides more drastic changes. While it is possible to enable both methods
at the same time, this is not recommended and can lead to unsatisfactory results. The Deep

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 37

3 Rendering 3.10 Denoising

Learning-based denoising filter operates on high dynamic range images. Tone mapping can
be applied after denoising. TensorCores are used for inferencing on Volta and later GPUs.

Note:

* The Deep Learning-based denoising filter is only available when running on GPU
hardware, since the inferencing step of Deep Learning systems is impractical to
execute on CPUs. Also note that the additional memory required for denoising
might exhaust device memory if almost all available memory is already in use by
the renderer. In this case, the whole postprocessing system will fall back to CPU in
order to preserve device memory, in consequence disabling denoising. Image
resolution has a large impact on memory consumption of this denoiser.

* The Deep Learning-based denoising filter is intended for Iray Photoreal and Iray
Interactive render modes only.

3.10.1 Simple degraining filter

The following attributes on the I0Options class, shown here with their default settings, control
the simple degraining filter:
mi::Sint32 iray_degrain_filtering = 0
Selects one variant of the degraining filter. It can reduce low frequency noise without
sacrificing overall sharpness. It is intended to be used in the final stage of the rendering

phase, mainly to reduce remaining subtle grain in difficult areas of a scene. Setting this
value to zero disables the degrain filter. There are five different modes to select from:

1. Pixel clipping
2. Smart median
3. Smart average
4. Limited blur

5. Limited auto blur

Modes 1 to 3 are working very conservatively and should thus be safe to use in general,
modes 4 and 5 are considered to be more aggressive and should be used with caution,
especially if the scene features fine details in either geometry or materials. It is
recommended to experiment with different radius settings interactively to achieve best
results.

mi::Sint32 iray_degrain_filtering_radius = 3
This value should be reduced if the filter blurs edges excessively and should be increased
if some noise still remains in the image. This value is currently limited to a minimum
radius of 2 and a maximum radius of 4.

mi::Float32 iray_degrain_filtering_blur_difference = 0.05

Modes 4 and 5 feature an additional setting that limits the influence of neighboring pixels
if the brightness levels between are too different.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 38

3 Rendering 3.10 Denoising

Note: Unfortunately there is no general recommendation on which degrain filter mode
will perform best on a specific scene, thus it is necessary to cycle through the different
modes manually to obtain the best results for a given scene. As a rule of thumb, modes 3
and 5 are usually the most reliable ones, with 5 being the more aggressive of the two.

Note: The following options are now deprecated:
° progressive_rendering_filtering

° iray_black_pixel_filtering_max_frame

3.10.2 Deep Learning-based Denoiser

The following attributes on the IOptions class, shown here with their default settings, control
the integrated Deep Learning-based denoising:

bool post_denoiser_available = false

Makes the denoiser available to run. By itself, this option does not cause any changes in
the output image (see option post_denoiser_enabled below), it just triggers generation
of all additional data needed for denoising to make sure it is available in case denoising
is enabled later during progressive rendering. If set to true, this option may incur a small
memory and performance overhead and should be set to false if denoising is not desired.

bool post_denoiser_enabled = false

If set, the denoiser will process the rendered image. If the option
post_denoiser_available is not set, this option has no effect. It is not necessary to
re-start progressive rendering of an image when changing this option, instead the next
frame of the image will be produced with the selected value applied. Enabling the
denoiser may consume significant memory and performance.

mi::Sint32 post_denoiser_start_iteration = 8

If the denoiser is enabled, this option will prevent denoising of the first few iterations,
with the value specified in this option being the first denoised iteration. This can prevent
the denoiser’s performance overhead from impacting interactivity, for example, when
moving the camera. Additionally, the first few iterations are often not suitable as input
for the denoiser due to insufficient convergence, leading to unsatisfactory results.

mi::Sint32 post_denoiser_max_memory = 1024

Defines the maximum amount of device memory the denoiser is allowed to use in
Megabytes (default: 1024 MiB). Note that the denoiser may automatically use less
memory than the value specified here, depending on hardware used and current
renderer memory usage, in order to balance denoising speed and memory usage. It
should normally not be necessary to change this value, even on devices with very limited
memory.

bool post_denoiser_denoise_alpha = false

If set to true, the alpha channel of RGBA images will be denoised, otherwise it will be left
unchanged. Note that setting this to true will approximately double the time needed for
denoising. Older versions of iray always denoised the alpha channel, if present.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 39

3 Rendering 3.11 Deep-learning-based SSIM predictor

Note: It is highly recommended to keep the "progressive_aux_canvas" scene option
enabled to not disturb the DL denoiser by aliasing artifacts. Also note that while older
Iray versions did recommend to not combine DL denoising with bloom, it is not an issue
anymore.

The denoiser is also able to perform upscaling. See the Render target canvases (page 192)
section for details.

3.11 Deep-learning-based SSIM predictor

Iray Photoreal and Iray Interactive provide a method for estimating how far away a partially
converged image is from an imaginary converged image. This estimate might be used, for
example, to decide when a Monte Carlo render is finished, or to estimate the time to render
completion, or for adaptive sampling, or to determine whether denoising is necessary.

The SSIM predictor is trained by comparing partially converged images to fully converged
images, and measuring their difference using the Structural Similarity Image Metric (SSIM).
For more information about SSIM, see Structural silrmilari’cy.1

Like the denoiser, this post-processing stage comes with a built-in pre-trained model that has
many of the same caveats as the denoiser. Be sure to read and understand the limitations of
the DLDenoiser post-processing stage. Be aware that the performance of the SSIM predictor
model depends on the noise and color characteristics of the renderer used to product the
source image. Also note that it is highly recommended to keep the "progressive_aux_canvas"
scene option enabled to not disturb the process by aliasing artifacts.

3.11.1 Controlling the SSIM predictor

The following attributes on the I0ptions class, shown here with their default settings, control
Deep Learning-based SSIM prediction:

bool post_ssim_available = false

Makes SSIM available. By itself, this option does not enable SSIM (see option
post_ssim_enabled below), it just triggers generation of all additional data needed for
SSIM to make sure it is available in case SSIM is enabled later during progressive
rendering. If set to true, this option may incur a small memory and performance
overhead and should be set to false if SSIM is not desired.

bool post_ssim_enabled = false

If set, the SSIM predictor will process the rendered image. It is not necessary to re-start
progressive rendering of an image when changing this option, instead the next frame of
the image will be produced with the selected value applied. Enabling the SSIM predictor
may consume significant memory and performance.

float32 post_ssim_predict_target = 0.98
The SSIM target value for the prediction. The higher the value, the closer is targeted
image to the fully converged one, with value of 1.0 zero being pixel-by-pixel match.
Recommended range for this value is between 0.8 and 0.99. For values outside of that

1. https://en.wikipedia.org/wiki/Structural_similarity

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 40

https://en.wikipedia.org/wiki/Structural_similarity

3 Rendering 3.11 Deep-learning-based SSIM predictor

range, a warning is printed and prediction is computed for the target value clipped to
that range.

mi::Sint32 post_ssim_max_memory = 1024

Defines the maximum amount of GPU device memory the SSIM predictor is allowed to
use in Megabytes (default: 1024 MiB). Note that the SSIM predictor may automatically
use less memory than the value specified here, depending on hardware used and current
renderer memory usage, in order to balance SSIM prediction speed and memory usage.
It should normally not be necessary to change this value, even on devices with very
limited memory.

3.11.2 Progress information

Depending on the active configuration, progress will be reported to the IProgress_callback
in the following areas:
progression

Estimated progress between 0 and 1 towards the configured prediction target.

error

Estimated average per-pixel error.

estimated_convergence_at_sample
Reflects a very rough estimate of the total number of samples required to reach the
configured prediction target.

estimated_convergence_in

Reflects a very rough estimate of the remaining amount of time required to reach the
configured prediction target. This area is not available in all render modes.

Note that values reported here are rough estimates which will be affected by scheduling
configuration and internal scheduling decisions, active hardware, etc.
3.11.3 SSIM predictor performance

For HD and 4K images, the SSIM predictor produced the following memory footprints and
timings:

Size GPU Memory Time (ms)
1920x1080 GV100 441 MB 8.7
P6000 441 MB 9.2
P100 444 MB 12.3
P5000 444 MB 21
3840x2160 GV100 1765 MB 23
P6000 1765 MB 28
P100 1777 MB 44
P5000 1777 MB 80

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 41

3 Rendering 3.12 Matte fog

3.11.4 SSIM predictor limitations
The SSIM predictor has the following limitations:

* It is intended for Iray Photoreal and Iray Interactive render modes only.
* SSIM prediction is disabled if image denoising is set to enabled.

* It runs under the first GPU found by the system.

* There is no CPU fallback.

3.12 Matte fog

Iray Photoreal and Iray Interactive offer a simple "matte fog" effect to create fog-like
atmospheric effects, such as aerial perspective, without the computational overhead of
modelling an actual scattering volume. Matte fog does not affect rays hitting the
environment, as attenuation and in-scattering are assumed to be already present in the
environment or backplate. The following attributes on the I0ptions class, shown here with
their default settings, control matte fog:

bool matte_fog = false
Enables the matte fog effect.

matte_fog_visibility = 10000.0

Specifies the visibility range in meters, that is the distance at which the contrast between
bright and dark objects is still perceivable according to the Koschmieder equation. Note
that this value takes the conversion of scene to metric units into account (options
attribute "md1_meters_per_scene_unit")

matte_fog_visibility_tint = Color(1.0)

Allows to vary the visibility range per color channel.

matte_fog_brightness = 1.0

Specifies the brightness of the in-scattered lighting, either as an absolute value or as a
multiplier (see next item).

matte_fog_brightness_relative_to_environment = true

If set to true, the brightness of the in-scattered lighting is automatically determined to be
relative to the total illuminance of the environment or sun and sky. If set to false, the
brightness is an absolute value.

matte_fog_brightness_tint = Color(1.0)

Offers a color tint for in-scattered lighting.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 42

4 Iray Photoreal

Iray Photoreal is an interactive, ray-tracing based render mode that generates “push-button”
photorealistic imagery featuring complex global illumination effects. Iray Photoreal makes
use of a highly optimized BSDF and EDF based framework, essentially capturing the physical
behaviour of real-world materials and light sources. Iray Photoreal can leverage NVIDIA
CUDA capable GPUs to render photorealistic images much faster than on a CPU, due to the
highly parallel nature of the underlying simulation processes. If a system does not feature
CUDA capable graphics boards it will automatically run on CPU. This will produce the same
images but typically the rendering will take much longer to complete. In addition, it can also
use both resources at the same time. See the IRendering_configuration interface and the
related configuration section (page 27) for details.

The following sections provide an introduction to Iray Photoreal, document its system
requirements and limitations, and provide further details about capabilities and options.

4.1 Introduction

Due to the simulation-based nature of Iray Photoreal, its behaviour is different to that of the
other rendering modes in many aspects. For example most scene options which control
global illumination and other advanced lighting aspects do not apply to Iray Photoreal.

Iray Photoreal does not support classic rendering features such as final gather or photon
mapping but catches global illumination effects automatically without the need of explicitly
controlling different stages of the rendering process and thus avoids tweaking various scene
dependent parameters.

Due to this “push-button” simulation approach, it is not possible to exclude objects from
casting or receiving global illumination, shadows, etc. The same is true for backface culling.
Those flags will silently be ignored. It is also not possible to switch certain global illumination
features off as these will always be included. The only exceptions are the effect of the
iray_max_path_length rendering option that can for example be used to just get direct
lighting contribution and the primary visibility flag for scene objects. In addition, the concept
of light path expressions (page 201) was created to enable very similar workflows and effects
instead, but in a much more general fashion that in addition is still physically plausible.

4.2 System requirements

The current system requirements for Iray Photoreal:

* The plugin libiray needs to be loaded in neuray before this render mode is available.
See the IP1ugin_configuration interface for methods to load plugins.

* Available on Windows x86 64 bit, Linux 64 bit, and macOS 64 bit.
* GPUs of CUDA compute capability 5.0 and higher are supported.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 43

4 Iray Photoreal 4.3 Limitations

* Driver requirements: The driver needs to support CUDA 12.4.

4.3 Limitations
4.3.1 Result canvases

Iray Photoreal supports all render target canvases (page 192) with the following limitations:

* Iray Photoreal can currently render up to 20 light transport canvases at once. Light
transport canvases are result, irradiance, and irradiance_probe canvases,
including either built-in LPEs like diffuse or user-defined LPEs. Additional light
transport canvases raise a warning and will be ignored. This limitation does not apply to
auxiliary canvases like object_id or normal, which may still be computed in addition
to this limit.

Using objects with set backplate_mesh attribute in combination with the dome ground
plane or other matte objects will result in undefined behavior, if an additional
(non-backplate) object is intersecting the dome ground plane or the matte objects. In
addition there is also a limitation where the ground plane, if seen from below, may still
show the objects above the ground plane, even if the corresponding flag is set to false.

Auxiliary canvases will yield unexpected results if the camera is placed inside a
participating medium or inhomogeneous volume (page 110) objects are present. For
depth, distance, world_space_position, object_id and material_id canvases the
volume will be invisible, while all other buffers will show black when the volume is
sampled.

* Volume scene elements cannot be marked as "selected" for the selection_outline
canvas.

* The number of texture spaces available through texture_coordinate[n | is currently
limited to four.

The irradiance canvas cannot be used in the same render call with any of the result
render buffers.

* The irradiance_probe canvas cannot be used in the same render call with any other
canvas.

The irradiance_probe canvas cannot be used with the caustic sampler.

Iray Photoreal cannot render the shadow canvas.

Canvases held by IRender_target_opengl will always be written in their entirety, even
if the ICamera specifies a window. Rendering will still be limited to the window area but
the pixels outside of that area will be set to black.

4.3.2 Support of light path expressions
Iray Photoreal supports all light path expressions (page 201), with the following limitations:

* EDF specifications are not supported and will raise an error message.

* Directional lights are considered to be part of the environment for the purpose of LPEs.
Note that, since the environment does not have an LPE label, directional lights cannot be
filtered with labels.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 44

4 Iray Photoreal 4.3 Limitations

4.3.3 Materials

The material model of Iray Photoreal is based on the Material Definition Language (MDL)
(page 97). The implementation of MDL has the following limitations:

* The number of elemental BDSFs per material are currently restricted to a maximum of
16.

* The number of (procedural) texture functions per material are restricted to a maximum
of currently 32.

* Spectral dispersion resulting from a spectral index of refraction (for example, specified
by using base::abbe_number_ior) is currently only supported for df::specular_bsdf and
not for df::simple_glossy_bsdf.

* The number of elemental VDFs per material is currently restriced to a maximum of 3.
Further VDFs modify the directional bias of one of the first 3 VDFs by averaging.

* The material’s volume coefficients are varying in MDL, however, Iray Photoreal only
supports uniform coefficients.

4.3.4 Decals

Iray Photoreal has the following limitation on decals:

* The number of decals whose clip box can overlap at a surface shading point is limited to
six. If a decal is applied on both sides of a surface, it naturally counts twice towards this
limit. The number of decals in general is unlimited.

4.3.5 Rendering

Iray Photoreal has the following general limitation:

* Infinite lights are always considered matte lights.
* Iray Photoreal ignores the following attributes:

° reflection_cast

° reflection_recv

° refraction_cast

° refraction_recv

° shadow_cast

* shadow_recv

° face_front

* face_back

4.3.6 Picking

Picking can only be used on a render context that has already been used to render at the
current resolution and with the current set of devices.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 45

4 Iray Photoreal 4.4 Matte objects and matte lights

4.4 Matte objects and matte lights
4.4.1 Introduction

Matte objects and matte lights are advanced techniques to aid including synthetic objects
under matching lighting (captured for example via lightprobes) onto a real world photograph
(a virtual backplate (page 139) or environment map). In a classic workflow, one needs to
assign special custom shaders to objects to receive a separate shadow pass along with
additional global illumination information that must then be combined with the original
rendering pass in external compositing steps.

Iray Photoreal simplifies this classic workflow by avoiding the separate postprocessing steps
and allowing for a fully progressive and physically plausible rendering of the complete scene
at once. In addition, matte objects do not need to rely on secondary buffers and setting up the
additional shaders that must usually be tweaked on a per scene basis, as all of the necessary
logic is directly incorporated into the actual core rendering architecture.

To guide the interaction of backplate and rendered objects though, additional matte objects
have to be provided that should (roughly) match the photographed real world objects using
the same camera settings. In addition, these objects should be assigned (roughly) matching
materials to further perfect the illusion of the rendered objects being part of the environment
and especially interacting closely with the backplate.

4.4.2 Attributes

The following attributes on the IAttribute_set class controls matte objects:

bool matte = false

If set to true, this attribute flags objects and lights as matte objects or matte lights,
respectively.

mi::Float32 matte_shadow_intensity = 1.0

If the matte flag is set for an object, this controls the intensity of the shadow cast on the
matte object with a value greater or equal to 0.0. A value of 0.0 denotes no shadow at all
and a value of 1.0 denotes regular shadow intensity, thus values between 0.0 and 1.0
denote a lighter shadow. Values above 1.0 increase the shadow intensity. Note that the
range of useful values above 1.0 is rather limited and exceeding this range may lead to an
unnatural dark shadow that can influence other additive lighting effects, such as
reflections of the objects in the scene. The exact useful range is scene dependent.

bool matte_connect_to_environment = false

Only effective if a backplate function or the backplate color is set. When set to true,
secondary interactions (like a reflection) with the matte object will use the environment
instead of the backplate/color.

bool matte_connect_from_camera = false

This additional flag makes the matte object behavior toggle between two different lookup
types. The first one is done locally (flag is set to true), where similar interactions with the
matte object (for example, the same point of intersection) will deliver the exact same
lookup into the real world photograph, which usually works best for a very elaborate
matte object setup specifically arranged for only a single or very similar camera

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 46

4 Iray Photoreal 4.4 Matte objects and matte lights

position(s). The second type is global (flag is set to false) where the real interactions
with the environment or backplate are used instead, which is usually preferrable for
simple matte object setups (like plain shadow catchers) or full camera interaction. Note
that setting the flag will only be noticeable in scenes where no backplate/color at all is
specified (so all interactions will always be happening with the environment), or if a
backplate/color is specified and the "matte_connect_to_environment" flag is set in
addition.

4.4.3 Scene Option

bool matte_remap_uv_to_dome_in_aux_canvas = false

If set to true, all matte objects (including the implicit dome ground plane) will feature
special texture coordinates that are written into the texture_coordinate canvas. These can
be used for the actual uv-mapping into a spherical environment texture map.

bool matte_visible_in_aux_canvas = false

When set to true, all matte objects (including the implicit dome ground plane) will show
up in any auxiliary render canvas like texture_coordinate, object_id or distance.

bool matte_area_lights_visible = false

By default matte area lights are not visible (neither directly nor in reflections) since in a
matte workflow those paths should evaluate to the backplate or the environment. This
behavior can be changed by setting this option to true.

4.4.4 Example

A simple example would be to add a synthetic cube onto a backplate of a photographed
wooden table.

* The scene must be set up to include both the cube and the top of the table (which can be
a very rough approximation, so a simple rectangle the size of the table can already be
sufficient).

* The virtual camera must be set up to match the original real world camera position and
lens settings (to have the objects in scene and photograph align).

* An environment map with similar lighting characteristics (best would be a matching
lightprobe of the same real world scene) must be provided.

* Approximately match the material of the original table, including textures (or even a
bump or normal map) and enabling the matte flag of the table object.

Instead of rendering the table object directly into the output buffer like any other standard
object, Iray Photoreal now triggers a specialized handling of the matte object that directly
combines backplate information, environment lighting, interactions of both matte and
synthetic objects (global illumination) and the artificial shadows cast onto the matte objects,
in a single progressive rendering step.

4.45 Additional notes and limitations

An environment map or a backplate (or both) should be specified to get the full benefit of
matte objects. These define the appearance of matte objects when they interact (through

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 47

4 Iray Photoreal 4.5 Ghost lights

reflections and refractions) with synthetic objects. If "matte_connect_from_camera" is
enabled, the backplate is always projected onto the matte object from the camera view. If this
projection is impossible, the environment map is used instead. If a hemispherical
environment dome of sufficient resolution and quality is available, this can also be used
alone. But these are difficult to generate, so in most cases a 2D photograph will be used as the
backplate, which can be seen as a high-quality complement to the environment map.

It is possible to use the matte objects feature with neither a backplate nor an environment
map. In such a case, matte lights should be used to approximate the scene lighting. But many
interesting effects will then be missing from the rendered image, such as reflections of matte
objects onto synthetic objects, because the backplate/environment defines how matte objects
appear in those reflections.

Note: The implicit groundplane (page 127) is basically a special built-in case of the more
general matte object functionality.

Note: When rendering irradiance (either probes or buffer) all matte objects are
completely ignored and act as if the geometry is flagged as disabled.

4.5 Ghost lights

Area light sources in Iray Photoreal are created via regular scene geometry. As such, these are
typically always visible, both directly (from the camera) and indirectly, meaning in reflection
or refraction, and do cast shadows. This may in some situations be undesirable, in particular
if light sources are placed by artists to create a certain look or lighting mood: the intention
may then be that lights should illuminate the scene (to a large extent), but also should
otherwise not show up directly in the rendering. This creates a new type of problem for
physically based rendering though: When is the contribution of a light source considered to
be wanted, and when should it be omitted, without jeopardizing the rest of the light transport
simulation?

To get started, the basic building blocks that control the visibility of lights are:

* For camera rays the visible attribute may be used to exclude directly visible geometry.

* A transparent MDL material (thin-walled, with only a specular transmission BSDF) can
be used to make the non-emissive part of the light geometry disappear, including
shadows.

* Light path expressions can be used to classify and (exclude) certain light contribution
paths from the rendering.

Iray Photoreal further adds the concept of ghost lights to complement these basic concepts.
Ghost lights allow for more fine-grained control on how light sources are visible in glossy
interactions. Such lights feature an additional factor to enable a smooth blend between full
and no contribution in glossy reflection and transmission. The factor can be set as an attribute
on the TAttribute_set class and may affect both objects emitting and objects receiving light:

mi::Float32 ghostlight_factor = 1.0

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 48

4 Iray Photoreal 4.7 Progressive rendering

Values greater than one turn an area source of light into a ghost light. This will
immediatelly remove contributions of that light source from paths reaching the light via
pure specular reflection and transmission. The larger the value, the more of the emission
from that source will be removed from glossy interactions, i.e. glossy highlights and
reflections from that source will smoothly be faded out. Increasing the factor by one will
halve the peak brightness of glossy highlights. Thereby, surfaces with higher roughness
are influenced less. In any case, diffuse materials are excluded from the factor and will
always be lit from the light source the same way. Note that this factor can also be set on
the receiving object side, where it acts as a multiplier to the light source factor (but only if
there are ghost lights in the scene to begin with). This allows to fine-tune the behavior on
a per object basis to achieve both a stronger removal of highlights or their recovery by
using factors less than one.

4.6 Refractive objects and IOR handling
4.6.1 Modeling Complex Refractive Objects

When building scenes with multiple refractive objects in it, a common way to deal with
hierarchical volumes (that feature a varying index of refraction (IOR)) is to specify separate
materials for the inside and outside of an object to provide a necessary hint to the rendering
implementation about the order of the IORs. Another common trick to guide the rendering is
to leave a small gap of “air” between the volumes to avoid numerical precision issues. In Iray
Photoreal, these workarounds are not needed. It will handle all IOR stacking automatically
and does not need to care about explicit surface orientation or precision.

Still, there can be different approaches on how to represent hierarchical refractive volumes.
As an example, there are different ways to model a glass full of water. First of all we will
assume that the glass itself will be modeled double-sided (solid), as this provides the most
realistic look by definition. As for the water volume inside the glass, there are now three
possibilities: Matching the boundary geometry of the inner glass layer exactly with the water
volume geometry, or leaving a small gap of “air” in-between the two volumes, or making the
water volume slightly overlap the glass volume.

While Iray Photoreal can handle all three cases automatically, the most realistic rendering can
only be guaranteed by providing slightly overlapping volumes, due to the inherent limited

numerical precision of the simulation process. The overlapping volumes will be detected and
the simulation will handle the refraction calculations as if the volumes would perfectly align.

More simplistic cases, for example, ice cubes or bubbles floating inside the glass of water, do
not need special care at all, and can be modeled in a straight-forward way and placed
completely inside the other refracting object volume.

4.7 Progressive rendering
4.7.1 Progressive rendering modes, updates and termination

Iray Photoreal can render progressively into a render target. On each render call the image
will be refined more so that over time the image converges to very good quality. The
intermediate images can be displayed to the user thus giving a good early impression about
the final lighting and material look of the scene. Note that Iray Photoreal does not use any
final gathering or photon map based techniques so any changes to the lighting will be visible

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 49

4 Iray Photoreal 4.7 Progressive rendering

very fast. Progressive rendering works only if the same render context is reused for
subsequent images.

There are a number of termination criteria that control when an image is considered
completed. Unless an error is encountered, IRender_context: :render() will return 0 until
the image is completed, at which point the call returns 1.

For each render request, the renderer will automatically check if the parameters for the
requested image (for example image resolution or camera position) fit to the last rendered
image. Also the scene will be checked for changes. If any changes are found that would result
in visible changes in the image the render context will be reset and the progressive rendering
starts from the beginning.

The following key-value pairs, shown here with their default settings, control rendering
when passed to IRender_context: :set_option().

const char* scheduler_mode = "interactive"

Controls the rendering mode, which is by default interactive. Setting this option to
"batch" switches to the non-interactive rendering mode. This mode yields higher
efficiency at the cost of responsiveness and is thus better suited to the generation of a
final frame, rather than interactive display.

mi::Uint32 min_samples_per_update = 1
Controls the minimum number of samples that need to be rendered per render call in the
progressive render loop.

mi::Float32 interactive_update_interval = 1.f/60.f

The update interval time in seconds is compared to the rendering time since the
beginning of this interactive render call. This acts as a hint to the renderer. Longer times
will generally increase rendering efficiency, while shorter times yield more frequent
updates.

mi::Float32 batch_update_interval = 1e36f

The update interval time in seconds is compared to the rendering time since the
beginning of this batch render call. This acts as a hint to the renderer. Longer times will
generally increase rendering efficiency, while shorter times yield more frequent updates.

mi::Float32 max_progressive_update_interval = 300.f

A soft upper limit to the time between progressive updates. The internal scheduling
mechanism will gradually transition from greater responsiveness to greater efficiency.
This option limits that transition. This option can be used to ensure a certain level of
responsiveness (e.g. time required to react to scene changes), even at later stages of
progressive rendering, at the cost of rendering efficiency.

mi::Sint32 post_pipeline_device = -1
Selects the device to use for render result postprocessing. This uses the same indexing
scheme as IRendering_configuration: :set_resource_enabled(), with index 0
representing the CPU. A value of -1, the default, allows Iray Photoreal to select a suitable
device automatically.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 50

4 Iray Photoreal 4.7 Progressive rendering

In systems where multiple GPUs participate in rendering, and where a
IRender_target_cuda is provided to Iray Photoreal, it may be beneficial to point this
option to the device on which the render target canvases reside. In that case (or if that
device is selected automatically), the canvas data will not need to be transferred off the
device, which may improve interactive performance significantly.

mi::Sint32 master_buffer_device = -1

Selects the device which stores the internal framebuffer that is used to accumulate
rendering results. This uses the same indexing scheme as
IRendering_configuration::set_resource_enabled(), with index 0 representing the
CPU. A value of -1, the default, will allow Iray Photoreal to select a suitable device
automatically. This will generally be the same device that is also used for postprocessing.

The update interval options control how frequently the render call returns to the caller. At the
default settings, IRender_context: :render() will return after each update in interactive
mode, and after finishing the image in batch mode. Decreasing the
"batch_update_interval" will allow the call to return before completing the image. The
image is considered completed when either the maximum number of samples or the
maximum time is exceeded, or if the error falls below a given threshold (see below), but not
before the minimum number of samples have been computed.

All these termination criteria are checked after each progression step. The size of the steps is
controlled internally and increased over time to improve efficiency when quick updates
would no longer add significant information to the resulting image.

The following attributes on the I0Options class, shown here with their default settings, control
progressive rendering;:

mi::Sint32 progressive_rendering_min_samples = 4

Controls the minimum number of samples that need to be rendered before the
progressive render loop is allowed to terminate by any of the termination criteria.

mi::Sint32 progressive_rendering_max_samples = 100

The maximum number of samples is compared to the number of samples since the
beginning of this progression. The render call will return 1 if the rendering loop is
terminated by this termination criterion.

A value of -1 will disable the criterion altogether.

mi::Sint32 progressive_rendering_max_time = 3600
The maximum time in seconds is compared to the rendering time since the beginning of
this progression. The render call will return 1 if the rendering loop is terminated by this
termination criterion.

A value of -1 will disable the criterion altogether.

bool progressive_aux_canvas = true

Controls progressive rendering of auxiliary canvases like depth and object_id. If
enabled, rendering auxiliary canvases will continue until one of the stopping criteria is
met, thus potentially sampling each pixel with more than one sample. Note that the
convergence quality estimate described below is still only computed for light transport

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 51

4 Iray Photoreal 4.7 Progressive rendering

canvases. However, rendering will be stopped for all canvases when the quality criterion
is reached.

Note that it is highly recommended to keep the option enabled when using the Al
Denoiser, DL based SSIM quality prediction, or Toon postprocessing, as otherwise the
aliasing can disturb these filters and lead to noticeable quality loss, especially at a large
number of iterations rendered.

If this option is disabled, auxiliary canvases only receive a single sample per pixel. This
can be desirable sometimes because of the nature of the canvases: averaged normals or
depth values are not always well defined (e.g. on silhouettes).

The non-interactive mode can be used to reduce overhead and thus to increase scalability for
large render tasks, since the result is written to the canvas (and potentially transferred over
the network) less frequently.

When the scheduler mode is switched from interactive to batch, Iray Photoreal will continue
refining the image in batch mode at the next render call. When switching from batch mode to
interactive mode, all progress will be lost and rendering will restart from scratch.

4.7.2 Convergence quality estimate

At some point the progressive rendering will have reached a quality where subsequent
frames will not have any visible effect on the rendering quality anymore. At this point
rendering may stop. This can be based on a convergence quality estimate that can be
computed in the non-interactive rendering mode.

The following attributes on the I0Options class, shown here with their default settings, control
the convergence quality estimate:

bool progressive_rendering_quality_enabled = true

The convergence quality estimate is only available in the batch scheduling mode and can
be enabled and disabled with this attribute. If disabled, rendering will not stop based on
the convergence quality and no progress messages will be issued for the current
convergence quality.

bool progressive_rendering_quality_ssim = false

Switches the convergence quality estimate to be based on the SSIM predictor (page 41).
Rendering will stop once the configured post_ssim_predict_target is reached. Note
that the predictor must be enabled for this option to work. Also note that
progressive_rendering_quality_enabled must be true for this option to work.
Contrary to the standard quality estimate, SSIM-based termination is not limited to batch
scheduling.

mi::Float32 progressive_rendering_quality = 1

A convergence estimate for a pixel has to reach a certain threshold before a pixel is
considered converged. This attribute is a relative quality factor for this threshold. A
higher quality setting asks for better converged pixels, which means a longer rendering
time. Render times will change roughly linearly with the given value, so that doubling
the quality roughly doubles the render time.

This option has no effect in SSIM mode.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 52

4 Iray Photoreal 4.8 Spectral rendering

mi::Float32 progressive_rendering_converged_pixel_ratio = 0.95

If the progressive rendering quality is enabled, this attribute specifies a threshold that
controls the stopping criterion for progressive rendering. As soon as the ratio of
converged pixels of the entire image is above this given threshold, Iray Photoreal returns
the final result for forthcoming render requests. Additionally, the render call will return 1
in this case indicating to the application that further render calls will have no more effect.
Note that setting this attribute to a value larger than the default of 0.95 can lead to
extremely long render times.

This option has no effect in SSIM mode.

The convergence quality estimate has some computational cost. It is only computed after
some initial number of samples to ensure a reasonably meaningful estimate. Furthermore, the
estimate is only updated from time to time.

4.7.3 Deprecated attributes

mi::Float32 progressive_rendering_error_threshold = 0.05

Use "progressive_rendering_quality”,
"progressive_rendering_quality_enabled", and
"progressive_rendering_converged_pixel_ratio" instead. In particular,
"progressive_rendering_converged_pixel_ratio" can be set to one minus this value
for the same effect.

4.8 Spectral rendering

Iray Photoreal supports spectral rendering, where light transport is not merely simulated on
tristimulus color values but on a continuous range of wavelengths. Iray Photoreal simulates
light on the spectrum of human visible color (380 to 780 nanometers, as defined by CIE color
matching functions) and computes a color result. The conversion to color implicitly
transforms the result from radiometric to photometric units.

While it is recommended to use spectral input data, it is of course possible to also use color
input data (such as RGB color textures), if spectral data is not available. The conversion to

spectra is automatically handled by the rendering core at runtime and there typically is no
memory overhead.

Spectral rendering can be activated and controlled via a set of scene options.

bool iray_spectral_rendering = false

Enables spectral rendering.

string iray_spectral_conversion_color_space = "rec709"
For the conversion of color data to spectra, the rendering core needs to know the color
space the data is defined in. Supported color spaces are CIE XYZ ("xyz") Rec.709/linear
sRGB ("rec709") Rec.2020 ("rec2020") ACES2065-1 ("aces") and ACEScg ("acescg")

Note: This option also comes into play when spectral data is used without spectral
rendering enabled: There it defines the conversion of spectra to colors to be used for
rendering.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 53

4 Iray Photoreal 4.8 Spectral rendering

string iray_spectral_conversion_intent = "faithful"

If color data is used in spectral rendering it needs to be converted to spectral data. This
conversion is ambiguous in the sense that for a given color there typically are infinitely
many spectra that yield that color (metamers). Fundamentally, the conversion in Iray
Photoreal is driven by the goal of yielding smooth spectra with some flexibility to steer
the details for reflection colors. Valid options are:

"natural”

Smoothness is preferred over reflectivity. As input colors approach the edge of the
gamut, the intensity of the resulting spectrum necessarily decreases. Consequently,
highly reflective saturated colors may render darker when spectral rendering is
enabled.

"faithful"
Sacrifice some smoothness to yield greater compatibility with color rendering

Note that this option only has an effect if iray_spectral_conversion_color_space is
"rec709". For other spaces, the behavior is similar to "natural”.

mi::Float32_3_3 iray_spectral_output_transform =
mi::Float32_3_3(
3.240600, -1.537200, -0.498600,
-0.968900, 1.875800, 0.041500,
0.055700, -0.204000, 1.057000)

This transform will be applied to the color result and can be used to transform to a
desired result color space. The default transforms from CIE XYZ to Rec.709/linear sRGB.

string iray_spectral_observer = cie1931

The observer function maps spectral values to three channel color output. By default the
photometric rendering mode uses the CIE 1931 2 degree standard observer as color
matching functions, such that the color ouput is CIE XYZ. Setting this option to
"cie1964", the color matching functions can be changed to the CIE 1964 10 degree
standard observer. Further, this option can be set to "custom” to use the user-defined
observer curve provided with iray_spectral_observer_custom_curve.

mi::Float32_3]
GipycifrRechrahsebiereshoit QIIEE @bskilver function. The values are equally spaced
between the minimum and maximum wavelength as provided by
iray_spectral_observer_custom_wavelength_min and
iray_spectral_observer_custom_wavelength_max. Note that spectral rendering in
Iray produces spectral radiance values in radiometric units (Watt per steradian per
square meter per nanometer) and the observer curve then defines the how that relates to
color output (in particular magnitude). For reference, the CIE color matching curves
have a peak of 683.002 and produce luminance output in photometric units (Candela per
square meter).

mi::Float32 iray_spectral_observer_custom_wavelength_min = 400.0

Specifies the minumum wavelength for the custom observer curve (in nanometers).

mi::Float32 iray_spectral_observer_custom_wavelength_max = 700.0

Specifies the maximum wavelength for the custom observer curve (in nanometers).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 54

4 Iray Photoreal 410 Guided sampling

4.9 Caustic sampler

The Iray Photoreal caustic sampler can be used to improve the quality of caustics in typical
turntable scenes, but also for scenes with complicated lighting and material setups. When
enabled, Iray Photoreal will augment the default sampler with a dedicated caustic sampler,
designed to improve capturing caustic effects. In terms of light path expressions (page 201),
the caustic sampler was designed to handle paths with the signature ES*D . *SL much better. It
can handle both directly visible caustics as well as caustics seen through mirrors or windows.

The following attribute on the IOptions class, shown here with its default setting, controls
the caustic sampler:

bool iray_caustic_sampler = false

Enables the caustic sampler if set to true.

The Iray Photoreal caustic sampler works best for small scenes where most of the scene is
visible to the camera, but is of course not limited to them. It forces guided sampling to be
enabled as well, to focus on the visible part of scenes. Nevertheless, the caustic sampling
quality might decrease with a growing scene size.

To catch caustics on the groundplane, the groundplane’s
environment_dome_ground_reflectivity parameter must be set. See “Environment dome”
(page 127) for a description of the groundplane and its settings.

The caustic sampler will not improve caustics in all use cases, and thus can actually harm
overall rendering speed as it comes with some performance overhead. The caustic sampler
can fail to improve caustics under the following conditions:

* Only a small part of a larger scene is in view (for example, the camera zooms in on a
single item in a detailed scene).

* The light source causing the caustic is large enough to be sampled through guided
sampling alone, which is faster.

Note: The caustic sampler may introduce bias in the following situations:

* A slight blurring of very sharp caustics
* Caustics falling on hair

* Caustics falling on other high frequency geometry like grass. Caustics will still be
rendered, but they might start to loose energy when the size of the object receiving
the caustic is close to or below pixel resolution as seen from the camera.

410 Guided sampling

The Iray Photoreal automatic guided sampling can be used to improve both the quality of
rendering (especially if the caustic sampler is disabled and/or the firefly filter enabled), as
well as the rendering convergence speed (when rendering a complicated scene, such as large
interiors). When enabled, Iray Photoreal will augment the default sampler with a dedicated
guidance cache, designed to improve the convergence of complicated light transport
scenarios.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 55

4 Iray Photoreal 4.1 Motion vectors

The following attribute on the I0ptions class, shown here with its default setting, controls
the improved sampling scheme:

bool guided_sampling = false
Enables automatic guided sampling if set to true.

The guided sampler will not improve convergence speed in all use cases, and thus can
actually harm overall rendering performance as it comes with some performance overhead,
especially on multi GPU systems, and even more when using hybrid GPU/CPU rendering. It
also comes at the cost of an increased memory usage (roughly 160 MB on each device, may
increase in future releases) and a slightly reduced iteration throughput, typically below 10
percent. The actual benefit can vary a lot, depending on the used hardware, if batch or
interactive scheduling is employed, and the type of scene being rendered. Turntable-like
scenes will not profit as much as architectural scenes that feature complicated lighting and
materials. In general, the number of iterations per time budget will decrease, while image
quality increases for the same budget. Scenarios, that are typically improved, are:

* Strongly occluded light sources. This includes bright environment map content (e.g. the
sun) that is blocked by walls, but extends to all other strongly shadowed lights as well.

* Volumetric rendering.
* Soft shadows of large area lights. To work, this requires the area light to be tessellated.

* Moderate caustics. Note that very sharp caustics can still only be sampled with the
caustic sampler (page 57).

* Strong indirect lighting

This feature depends on the automatic discovery of sources of variance. In some situations
this can also introduce more high frequency noise (speckles) due to some missed edge cases
in training. Thus, (for now) the recommendation is to enable the firefly filter in combination
with guided sampling.

The nature of improving future sampling, based on past observations, always bears a risk of

introducing an error. It is very likely that guided sampling will improve the sampling, often

by orders of magnitude. However, if no sufficient observations exist, guided sampling might
even reduce the discovery chances of the respective light.

As a rule of thumb, events with a probability of 1/1000 or larger will be sampled reliable.
With other words, when one out of 1000 pixels succeeds to sample a caustic or similar in one
iteration, it is very likely that guided sampling discovers this feature. In some situations even
rare 1/100000 events will be found. However, the chances for additional variance will
increase as well. If correctness is of large importance, guided sampling should be cross
validaded with an unguided image with many samples. The guided image is more correct, if
it contains contributions that are very noisy or missing in the unguided reference. Otherwise,
if it is missing a contribution or more noisy than the reference, guided sampling failed and
should be turned off.

4.11 Motion vectors

Motion vectors represent the direction and the amount of movement of the hit point of any
pixel in a scene. Note the following:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 56

4 Iray Photoreal 4.12 Rendering options

* Motion vectors are an exact measure of the difference between the position of hit points
at shutter open time and at shutter close time.

* Only first hits from the camera are considered. There is no record of the movement of a
hit point for a secondary ray.

* At the moment motion vectors are computed only for perspective cameras and cameras
with an equidistant distortion model.

Motion vectors can be output to a separate buffer. The computation and the output of motion
vectors is controlled by the following attributes of the I0ptions class:

bool motion_vectors_enabled = false
When set to false (default), the output in the motion vectors buffer is black.

When set to true, the computation of motion vectors is enabled.

mi::IString motion_vectors_space = "screen"
Computes motion vectors in "screen”, "camera"”, "world", or "NDC" space.
By default, motion vectors are computed in screen space; they represent the difference in
the number of pixels between shutter open time and shutter close time. In screen space,

the Z-component of motion vectors is always zero, which means the resulting motion
vectors are limited to two dimensions.

mi::Float32_3 motion_vectors_scale = mi::Float32_3(1,1,1)

Scales the motion vectors” components by the given amounts. For example, to flip the X
or Y component of the vectors, set the scale factors to (-1,1,1) or (1,-1,1) respectively.

mi::Float32 motion_vectors_shutter_offset = @

The value range is 0 to 1. When set to a value greater than zero, the shutter open time is
shifted. Shifting the shutter open time can be useful, for example, in 2D compositing
tools due to the way motion vectors can be used. Shifting the shutter open time also
affects the beauty buffer.

bool motion_vectors_instantaneous_shutter = false
When set to "false" (default), the beauty buffer contains a motion-blurred image.
When set to "true", the shutter is frozen at the open time, which produces a beauty
buffer without motion blur (motion vectors must be enabled for this to happen). This is

very useful when producing motion vectors for compositing, when a non-blurred image
is needed along with the corresponding motion vectors.

bool motion_vectors_background = false

When set to "false" (default), motion vectors are not computed for environment hits
and the corresponding pixels in the motion vectors buffer are black.

When set to "true", motion vectors are computed for environment hits as well.

412 Rendering options

One of the main design goals of Iray Photoreal is ease of use. It is not necessary to control the
algorithmic behavior via a myriad of settings of this render mode to achieve good results
across different kind of scenes.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 57

4 Iray Photoreal 4.12 Rendering options

Nonetheless, the following few attributes on the IOptions class, shown here with their
default settings where applicable, can control some aspects of Iray Photoreal:

mi::Sint32 iray_max_path_length
Bounds the maximum number of segments (bounces) of light paths to contribute to the
result. A length of two corresponds to direct light. Since this setting cuts off indirect
lighting contributions (one example would be the headlight of a car that depends on a lot
of indirect effects to look correct), it should only be applied when the rendering has to be
accelerated at the expense of physical accuracy.

mi::Sint32 iray_max_sss_path_length

Bounds the number of volume (aka subsurface scattering) vertices on a path.
Consecutive volume vertices are counted as a single event in the iray_max_path_length
restriction. This allows to have more volume bounces than surface bounces since they
tend to have larger contributions over long paths.

For example a path ETV+TL has a path length of four, regardless of the number of volume
vertices which cannot be more than iray_max_sss_path_length. Note that single
volume events count like regular events. A path ETVRVTL has a path length of six with
two volume vertices, so either iray_max_path_length<6 or
iray_max_sss_path_length<2 would cancel this path. For details on the path
descriptions see light path expressions (page 201)

mi::IString iray_default_alpha_lpe

Controls the default light path expression used for alpha channels if none is specified
explicitly. The default is ET*[LmLe]. See “Canvas names” (page 199) for details.

mi::Sint32 filter = FILTER_BOX

Iray Photoreal natively supports FILTER_BOX, FILTER_TRIANGLE and FILTER_GAUSS
filters for antialiasing. If FILTER_CMITCHELL or FILTER_CLANCZOS is requested, Iray
Photoreal will use the default box filter instead.

mi: :Float32 radius

The radius of the filter kernel. Recommended values are 0.5 for box filter, 1 for triangle
filter and 1.5 for Gauss filter.

bool iray_sharpen_filtering = false

To counter potential blurring effects caused by the antialiasing filters, or simply to
enhance the fidelity of the output image, one can select an adaptive sharpening filter.

mi::Float32 iray_sharpen_filtering_strength = 0.25
The strength /aggressiveness of sharpening. The supported range is from 0 to 1.

mi::Float32 iray_sharpen_filtering_balance = 0.75

This balances the enhancement between lower and higher frequencies in the image.
Higher values boost higher contrast areas, lower values affect more of the lower contrast
areas. The supported range is from 0 to 1.

bool iray_firefly_filter = true

Controls a built-in filter to reduce bright spots that may occur under some difficult
lighting conditions. Such bright undesired pixels are often called “fireflies”.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 58

4 Iray Photoreal 4.12 Rendering options

The filter works best in combination with the built-in tonemappers. If a tonemapper is
not enabled, the filter estimates can be too pessimistic for some scenes, resulting in some
fireflies to still appear. Contrary, it can also happen that the filter cuts off noticeable
contributions to the image, especially when calculating an irradiance buffer or irradiance
probes, as in that case no internal tonemapping is enabled. So it is required to either
disable the firefly filter completely or to set a correct "iray_nominal_luminance" value
whenever there is no internal tonemapper enabled, to avoid incorrect simulation results.
Note that also a tonemapper can be specified, but then optionally disabled (see
tm_enable_tonemapper) This will steer the firefly filter while not applying the
tonemapper to the final image. So a typical workflow would be to tweak the tonemapper
settings interactively until the image looks good, and then disabling the tonemapper via
tm_enable_tonemapper for the final rendering afterwards.

bool white_mode_enabled = false

When “white mode” is enabled, Iray Photoreal shades all the elements in the scene
(except volumes and the ground fog) using a special diffuse material whose default color
is white (its color can be controlled with white_mode_color, see below). The user has the
option to prevent some material instances from being overridden with the white diffuse
material by creating a boolean attribute called "exclude_from_white_mode" for those
material instances (set to true).

bool iray_white_mode_enabled = false
Synonym of the "white_mode_enabled" option above.

mi::Color white_mode_color = mi::Color(0.7)

Controls the color of the special diffuse material for the white mode.

mi::Color white_mode_bsdf_weight = mi::Color(0.7)

Controls the color that will be output in the BSDF weight buffer for the objects with
white mode.

mi::Float32 iray_nominal_luminance = @

The nominal luminance is a hint to Iray Photoreal on what is considered a “reasonable”
luminance level when viewing the scene. This luminance level is used internally to tune
the firefly filter and error estimate. When the nominal luminance value is set to 0, Iray
Photoreal will estimate the nominal luminance value from the tonemapper settings. If a
user application applies its own tonemapping without using the built-in tonemappers, it
is strongly advised to provide a nominal luminance.

Recommendations: For visualization, a reasonable nominal luminance would be the
luminance value of a white color that maps to half the maximum brightness of the
intended display device. For quantitative architectural daylight simulations (for
example, calculating an irradiance buffer or irradiance probes), a reasonable nominal
luminance could be the luminance of white paper under average day light.

mi::IString iray_instancing

Controls the instancing feature (page 35). Possible values are "off", "on", "user"”, and
"auto". No default is set, which is equivalent to "off".

mi::IString iray_rt_low_memory

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 59

4 Iray Photoreal 413 Mixed mode rendering and load balancing

Controls the memory used by the ray tracing acceleration hierarchies. Possible values are
"on" and "auto". No default is set, which is equivalent to "auto". For now, this can only
reduce memory usage on pre-Turing generation GPUs and the CPU (while potentially
harming rendering performance) if "on" is used.

mi::IString shadow_terminator_offset_mode = "user"

Allows to override the per-object boolean attribute "shadow_terminator_offset"
globally for all scene objects. Possible values are "off", "on", and "user" (the latter will
always use the per-object attribute). See “Tessellating curved surfaces” (page 150) for
more details about the shadow terminator artifact problem. Note that it is not
recommended to always have this forced "on", as it can lead to other shadowing
problems in some geometric setups. One may also consider using
approx_geometry_from_shading_normals instead, to actually subdivide/refine the
underlying geometry accordingly.

mi::IString iray_texture_compression =
Allows to globally override the per-texture texture compression option by setting this
attribute to any of the values "off", "medium" or "high". Note that textures used via
tex: :lookup_float3 are classified as normal maps internally and only the override
value "off" is respected in that case to avoid artifacts (as normal maps do not compress

well).

bool iray_allow_surface_volume_coefficients = true

Allows the volume scattering and absorption coefficients of materials to be driven by
non-uniform MDL expressions other than base: :lookup_volume_coefficients (which
may be used to specify inhomogeneous volumes (page 110)). The expressions will be
evaluated once on the surface, i.e. when a ray hits the object, and the volume coefficients
will stay the same for subsequent volume interactions within that object. In particular,
this enables the usage of 2d surface textures to drive subsurface scattering. Note that in
consequence the volumetric properties are typically no longer physically plausible.

ignore_max_displace = false

When enabled, displacement values are not clipped against the max_displace value
given on the displaced object.

413 Mixed mode rendering and load balancing

Generally, Iray Photoreal uses all available CPU and GPU resources by default. Iray Photoreal
employs a dynamic load balancing scheme that aims at making optimal use of a
heterogeneous set of compute units. This includes balancing work to GPUs with different
performance characteristics.

Iray Photoreal uses one CPU core per GPU to manage rendering on the GPU. When the CPU
has been enabled for rendering, all remaining unused CPU cores are used for rendering on
the CPU. Note that Iray Photoreal can only manage as many GPUs as there are CPU cores in
the system. If the number of enabled GPU resources exceeds the number of available CPU
cores in a system Iray Photoreal will ignore the excess GPUs.

The following key-value pairs, shown here with their default settings, control rendering
when passed to IRender_context: :set_option():

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 60

4 Iray Photoreal 4.15 Progress information

mi::Uint64 device_mask = OxFFFFFFFFFFFFFFFFull

The IRendering_configuration: :set_resource_enabled() function allows control
over the set of devices used per type of render context, e.g. Photoreal or Interactive. In
addition, the device_mask render context option allows the set of devices used by a
render context instance to be restricted beyond what is set via
IRendering_configuration.

The provided value is interpreted as a bitset. The least significant bit (bit 0) controls use
of the CPU for rendering. The remaining bits control GPUs with the same indexing
scheme that is used in IRendering_configuration: :set_resource_enabled().

Note that this option only affects the host on which the render context resides. Since it is
much more efficient to partition the machines in a cluster than it would be to use all
machines but partition the devices on each, the cluster_partition option is provided
to control resource usage in network rendering.

mi::Uint32[] cluster_partition =

Situations where multiple render contexts share the same cluster, it may be useful to
partition the cluster by restricting the set of hosts which each context may use. This may
be achieved by setting the cluster_partition option. Rendering will be restricted to
those active hosts in the cluster which are also listed in the provided array.

An empty array removes all restrictions.
For details about:

* Controlling resource use, see IRendering_configuration::set_resource_enabled().

* Resource scheduling modes, see the section on progressive rendering (page 34).

414 Timeout prevention

Iray Photoreal in CUDA mode uses the GPUs in a system to perform rendering. One or more
GPUs are often also used to drive the main display device displaying the desktop and
applications. On some operating systems CUDA kernel executions are not allowed to exceed
a specific amount of time to avoid having an unresponsive user interface.

If a CUDA kernel execution exceeds this limit the operating system may interpret the call as
stalled and may restart the driver. To avoid this, Iray Photoreal incorporates a mechanism to
automatically adjust the task sizes of GPU function calls so that the total rendering payload
per step is divided into smaller fragments depending on the efficiency of the CUDA device on
the given scene.

415 Progress information

In addition to the areas listed in the general description (page 32), Iray Photoreal may report
progress in the following areas if the convergence estimate is active.

progression
Reflects the estimated progress between 0 and 1 towards the configured error threshold.

error

Reflects the currently estimated average per-pixel error.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 61

4 Iray Photoreal 416 Global performance settings

416 Global performance settings

The following parameters are shared by all render contexts which use Iray Photoreal and are
set with the IRendering_configuration: :set_renderer_option() method.

iray_nvlink_peer_group_size = "@"
This setting controls the number of CUDA devices in an NVLINK peer group. Devices in
an NVLINK peer group can efficiently share device memory. Iray shares scene memory
among all devices in the peer group. This allows Iray to render scenes exceeding the
device memory of a single device. Note that devices in the peer group will not share all
their scene and rendering related memory (at the moment only bitmap/texture data is
shared).

For devices that do not support NVLINK peer access, the option may still enable sharing
device memory via PCI Express (if that is supported by the hardware configuration). In
this case, however, performance can be significantly lower.

Iray assigns enabled CUDA devices to peer groups in order of provided device id’s (see
IRendering_configuration::set_resource_enabled()). The peer group size needs to
be a factor of the total number of enabled CUDA devices. If any two devices assigned to
the same group do not have peer access available (e.g. due to the link topology doesn’t
allow for it), Iray will try to revert to the last provided and valid NVLINK peer group
size. Thus, it is the responsibility of the user to make sure that all devices assigned to
each group are properly connected through NVLINK.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 62

5 lray Interactive

Iray Interactive is an interactive raytracing render mode which uses faster yet less accurate
rendering algorithms than Iray Photoreal. Iray Interactive targets a look which is consistent
with the physically-based result of Iray Photoreal, yet it is optimized for interactive scene
manipulations. Iray Interactive leverages NVIDIA CUDA-capable GPUs. It is ideal where
ray-tracing effects, such as reflections and refraction, are desired and limited photorealism is
acceptable.

The following sections provide an introduction to Iray Interactive, document its system
requirements and limitations, and provide further details about capabilities and options.

5.1 Introduction
5.1.1 Purpose

Iray Interactive render mode is aimed at interactive design workflows, with fast feedback for
all scene updates, including but not limited to:

* Material and texture editing

* Transforming objects and changing flags

* Placing lights, modifying light type, shape and parameters

* Sun and sky parameters

* Camera parameters (depth of field, tone-mapping, backplate)

* Environment and dome parameters

Note: Vertex-level mesh editing is not yet supported at interactive update rates.

5.1.2 Key Features
The following list highlights key features of Iray Interactive render mode:

Interactivity

* Instant and high-quality visual feedback

* All scene elements editable in realtime

High performance

* Efficient rendering algorithms

* OptiX-based raytracing

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 63

5 lIray Interactive 5.3 Limitations

Flexibility

* Rendering effects beyond the restrictions of physical plausibility

* Configurable quality /performance dial

Compatibility

* Material Definition Language support
* Plugin renderer mode in NVIDIA Iray

* Cluster rendering

5.2 System requirements

The current system requirements for Iray Interactive:

* The plugin libirt needs to be loaded in neuray before this render mode is available.
See the IPlugin_configuration interface for methods to load plugins.

* Available on Windows x86 64 bit, Linux 64 bit, and macOS 64 bit.
* GPUs of CUDA compute capability 5.0 and higher are supported.

* Driver requirements: The driver needs to support CUDA 11.0.

5.3 Limitations
5.3.1 Result canvases

Iray Interactive supports all render target canvases (page 192) with the following limitations:

* The number of texture spaces available through texture_coordinate[n] is limited to
1.

* Using objects which set the backplate_mesh attribute in combination with the dome
ground plane will result in undefined behavior, if an additional object is intersecting the
dome ground plane.

* Iray Interactive cannot render all light path expressions. Light path expressions
including global illumination are not supported, that is, only expressions that capture a
subset of "ES*(D|G)?L" are supported.

¢ Iray Interactive cannot render the irradiance canvas.

* Iray Interactive cannot render the motion_vector canvas.

* Iray Interactive cannot render the selection_outline canvas.

¢ Iray Interactive cannot render the multi_matte canvas.

* The effect from normal perturbation functions is not included in the normal canvas.

* Canvases held by IRender_target_opengl will always be written in their entirety, even
if the ICamera specifies a window. Rendering will still be limited to the window area but
the pixels outside of that area will be set to black.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 64

5 lIray Interactive 5.3 Limitations

5.3.2 Materials

The Iray Interactive material model, which is based on MDL (“Material Definition Language”
(page 97)), has the following limitations:

* The number of elemental BDSFs per material are restricted to a maximum of 16.

* The number of (procedural) texture functions per material are restricted to a maximum
of 32.

* The material volume properties are ignored, so that no volumetric effects are visible
except for volume attenuation in glass-like materials.

5.3.3 Rendering

Iray Interactive has the following rendering limitations:

* No volumetric effects except volume attenuation by Beer’s law.

* Emissive geometry is not illuminating the scene, but it is considered when the geometry
is hit directly.

* Non-specular refraction of finite lights is rendered black.
* No motion-blur.

* No camera aperture function support.

* No custom matte objects.

* No ghostlights.

* If the irt_ambient_shadow_mode is not equal to 1, that is, when environment shadows
are off or when screenspace approximation is used, diffuse roughness is not supported
and subtle lighting differences can be visible if the dome is in spherical or hemispherical
mode. Some stronger lighting differences may be visible when using measured
materials.

* Environment lighting of diffuse layers does not take into account the dome mode, the
dome texture scale parameter and the position and size of the dome. The light is always
collected from the infinite environment, applying only the dome rotation parameters.

* The scene option environment_dome_ground_connect_from_camera is not supported.
* The scene option ignore_max_displace is not supported.

* The shadow buffer does not contain glossy reflections of shadow computations on the
virtual ground plane.

* Triplanar projectors are not correctly displayed in the texture_coordinate canvas.

* Automatic normal clamping (to prevent darkened materials due to strong perturbation
of shading normals) is slightly different from Iray Photoreal.

* Iray Interactive ignores the following attributes:
* reflection_cast
* reflection_recv

°* refraction_cast

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 65

5 lray Interactive 5.4 Progressive rendering

* refraction_recv
* face_front
* face_back
* The attribute backplate_mesh_function is not supported.

* The camera’s fisheye lens distortion mode
(mip_lens_distortion_type = "equidistant") is not supported.

* Section cap color can be set globally via the scene options, but not individually via
ISection_object::set_cap_color.

5.3.4 Picking

Picking reports only the first hit as a result.

Picking rectangles (i.e., more than one ray) is not supported.

5.3.5 Multi-GPU Configurations
NVLINK is not supported in Iray Interactive.

Due to prohibitive inter-GPU synchronization traffic, the following options are not available
in multi-GPU configurations:

* “Path space filtering” (page 77)

* FXAA antialiasing, see the rendering options of Iray Interactive

5.3.6 Instancing

The “user” instancing mode is not supported in Iray Interactive. The “auto” instancing mode
is supported.

5.3.7 Fibers

Fiber geometry is not supported in Iray Interactive.

5.3.8 Mixing GPU and CPU rendering

Unlike Iray Photoreal, Iray Interactive is not able to do hybrid/mixed rendering on both
GPUs and the CPU.

5.3.9 CPU fallback

Unlike Iray Photoreal, Iray Interactive is not able to finalize the rendering of canvases that
have been started on GPUs via its CPU fallback (due to missing hybrid /mixed rendering). So
in case of a GPU failure, the current rendering has to be restarted to render on the CPU.

5.4 Progressive rendering

Iray Interactive supports progressive rendering into a render context.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 66

5 lray Interactive 5.4 Progressive rendering

On each render call the image will be refined more so that over time the image converges. The
intermediate images can be displayed to the user thus giving a good early impression about
the lighting and material look of the scene. The renderer makes some approximations aiming
to produce an image with no or very little noise on exterior, turntable-type scenes.

For each render request, the renderer will automatically check if the parameters for the
requested image (for example image resolution or camera position) match to the last rendered
image. Also the scene will be checked for changes. If any changes are found that would result
in visible changes in the image the render context will be reset and the progressive rendering
starts from the beginning.

The following attributes on the I0Options class, shown here with their default settings, control
progressive rendering;:

mi::Sint32 progressive_rendering_max_samples = 100

The maximum number of samples is compared to the number of samples since the
beginning of this progression. The render call will return 1 if the rendering loop is
terminated by this termination criterion.

A value of -1 will disable the criterion altogether.

mi::Sint32 progressive_rendering_max_time = 3600

The maximum time in seconds is compared to the rendering time since the beginning of
this progression. The render call will return 1 if the rendering loop is terminated by this
termination criterion.

A value of -1 will disable the criterion altogether.

bool progressive_rendering_quality_enabled = true
Controls rendering termination based on a quality estimate. Note that in the Interactive
mode, this estimate is only available together with the
progressive_rendering_quality_ssim option.

bool progressive_rendering_quality_ssim = false

Enables a convergence quality estimate based on the SSIM predictor (page 41).
Rendering will stop once the configured post_ssim_predict_target is reached. Note
that the predictor must be enabled for this option to work.

5.4.1 Multi-GPU scalability and automatic sample count adaption

Similarly to Iray Photoreal, Iray Interactive supports both interactive and batch modes. In the
interactive mode the renderer aims at providing the highest frame rate. The batch mode
focuses on obtaining a converged image as fast as possible by rendering many iterations
simultaneously, thus making best use of the GPU resources. The gain is particularly visible on
multi-GPU machines and network rendering.

The scheduling mode can be passed to IRender_context: :set_option:

const char* scheduler_mode = "interactive"

Controls the rendering mode, which is by default interactive. Setting this option to
“batch” switches to the non-interactive rendering mode.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 67

5 lray Interactive 5.6 Rendering options

In interactive mode, the tradeoff between interactivity and convergence speed can be
controlled manually. Please note that the following options have no effect when batch
scheduling is enabled.

Iray Interactive enables an automatic sample count adaption. This is controlled with the
irt_automatic_sample_count scene option.

bool irt_automatic_sample_count = false

If enabled, using multiple GPUs will not lead to a higher interactivity, but to faster
convergence. Since high parallelism is sustained by adapting the amount of work
computed in each frame to the available resources, the resulting scalability is improved
drastically.

In some cases, this behavior can be too extreme. The trade-off between scalability and
interactivity can also be controlled manually by adapting the number of samples per frame
with the progressive_rendering_samples rendering option.

mi::Sint32 progressive_rendering_samples = 1

This sample count is taken into account if the automatic sample count is disabled. For
instance, when rendering in the network on 2 hosts, each equipped with 4 GPUs, a
reasonable choice would be to set the number of samples to 4, leading to higher
interactivity (max. 2x) and faster convergence (max. 4x).

As screen space shadow approximations and image filtering can degrade multi-GPU
scalability drastically, those are only available in single-GPU mode.

5.5 Lighting
Lighting features of Iray Interactive render mode include:
* Ray-traced, accurate hard- and soft-shadows
* Accurate reflections and refractions
* Efficient direct light sampling, including light profiles

* Efficient multi-scale environment sampling. Initial coarse-scale approximation with low
noise level converges quickly over time to an accurate result.

* Approximated indirect lighting (diffuse and glossy but diffuse-only on primary hit).
* Fast, smooth approximation of matte ground shadows

* Two ambient-occlusion modes (diffuse AO, AO guided by environment)

5.6 Rendering options

The following sections describe specific attributes on the IOptions class, shown here with
their default settings, for ambient occlusion and shadows as well as other miscellaneous
parameters.

5.6.1 Ambient occlusion and lighting

When indirect lighting is not enabled, Iray Interactive determines the incoming lighting at a
point as the sum of the contributions of the light sources, of the environment, and of an

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 68

5 lray Interactive 5.6 Rendering options

approximation of the indirect lighting. The contribution of the environment can be either

obtained by the environment itself, or approximated by a constant color. This constant color

can also be modulated by ambient occlusion. The indirect lighting is approximated by a
constant color, also potentially modulated by ambient occlusion.

mi::Sint32 irt_env_lighting_mode = ©@

* @ — Environment lighting
* 1 — Constant color approximation

* 2 — Ambient occlusion approximation

This setting determines how the computation of environment lighting is performed.

Using the default value of 0, Iray Interactive computes the environment lighting from the

actual radiance coming from the environment. The value 1 approximates the

contributions of the environment as irt_env_approx_color. The last value triggers the

computation of ambient occlusion. The behavior of Iray Interactive is tied to the

irt_ambient_occlusion_mode value. When irt_ambient_occlusion_mode is 0, the

environment is considered uniform, with an emission determined by
irt_env_approx_color. Otherwise, the emission of the environment is the
monochromatic luminance of the actual environment.

Note that this setting only affects the lighting on diffuse and glossy surfaces, while the

actual environment is always used when computing specular reflections.

mi::Color irt_env_approx_color = ©

Intensity of the constant lighting used to approximate environment lighting when
irt_env_lighting_mode is not 0.

mi::Sint32 irt_ambient_occlusion_mode = ©

* @ — Diffuse ambient occlusion

* 1 — Environment-guided ambient occlusion

This setting only affects the ambient_occlusion output canvas and the beauty render

when irt_use_ambient_occlusion is true. The first variant corresponds to the

common diffuse ambient occlusion calculation, which integrates the visibility weighted

by the cosine of the direction and the normal over the hemisphere. The difference
between the two settings is that the first variant assumes uniform ambient lighting,

whereas the second lights the scene under the actual environment used in the scene. The

exact behavior differs depending on the rendering output:

ambient_occlusion output

Both methods render the scene with a white Lambertian material. The
environment-guided ambient occlusion results in a color output.

beauty output

The scene is rendered with full material evaluation, but the contribution of the
environment is computed from a user-controlled intensity when
irt_ambient_occlusion_mode is 0 and from monochromatic environment
luminance otherwise.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual

69

5 lray Interactive 5.6 Rendering options

mi::Float32 irt_environment_occlusion_scale = 1.0

This setting describes the overall ratio between the openings and occlusions in the scene.
The environment lighting is then dimmed accordingly instead of relying on actual
environment lighting. Fast convergence with consistent lighting can then be achieved
using IBL falloffs.

bool irt_use_ambient_occlusion = false

This setting enables the use of ambient occlusion as an approximation of indirect lighting,
where the approximated indirect lighting is defined by irt_ambient_intensity.

mi::Color irt_ambient_intensity = ©

Intensity of additional ambient lighting, typically used to approximate global
illumination effects.

mi::Float32 ambient_falloff_max_distance = FLT_MAX
World space distance beyond which potential occlusion does not influence result of
ambient lighting and AO, as well as IBL if irt_ibl_falloffis true.

mi::Float32 ambient_falloff_min_distance = FLT_MAX
World space distance below which all potential occlusion fully influences result of
ambient lighting and AO, as well as IBL if irt_ibl_falloffis true.

mi::Float32 ambient_falloff = 1
Exponent to be used for weighting the occlusion value between falloff min and max

distance. The default 1 blends linearly.

mi::Sint32 irt_ambient_falloff_distance_space = 0

* @ — World space

* 1 — Raster space (pixels)

Defines whether the irt_ambient_falloff_min, max_distance values correspond to
world space or raster space.

mi::Sint32 irt_fast_convergence_start = -1

Defines the iteration number after which the iteration speed is reduced in favor of more
efficient convergence, saving up to 30 percent of the total render time to a converged
image. The default value of -1 disables this optimization altogether.

Note that when fast convergence is enabled, for a given iteration number the images will
slightly differ from the image obtained with fast convergence disabled.

mi::Sint32 irt_fast_convergence_ramp_up = ©

Defines the number of iterations over which speed is gradually reduced in favor of more
efficient convergence. The default value of 0 means that the speed reduction happens
right away at the iteration specified with the irt_fast_convergence_start option.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 70

5 lray Interactive 5.6 Rendering options

5.6.2 Indirect lighting

Iray Interactive includes a fast approximation technique for indirect lighting. This technique
takes into account all light sources, HDRI environment, physical sun and sky and diffuse and
glossy components of the material.

Iray Interactive supports two indirect illumination modes. The coarse mode is suitable to
obtain a fast early impression of the indirect illumination in the scene. At the first primary hit
point, the indirect illumination does only contribute to the diffuse layers, which means that
glossy contributions are only taken into account at secondary hits and beyond.

In fine scale mode, all reflective layers, including glossy and measured BRDFs, of the material
receive indirect illumination. Furthermore, indirect illumination from the close vicinity of the
shading location is taken into account more accurately. In contrast to the coarse scale
approximation, this mode does not introduce any undesirable corner darkening.

In turntable like outdoor scenes, indirect lighting can often be neglected, but it is usually an
important contribution in indoor scenes.

Note: The lighting and shadowing approximation values described in this section are
automatically disabled with a warning message when irt_indirect_light_mode is
not 0.

mi::Sint32 irt_indirect_light_mode = @

* @ — No indirect lighting except specular transmission and reflection
* 1 — Coarse scale diffuse indirect illumination

* 2 — Fine scale indirect illumination, including glossy and measured BRDFs

bool irt_indirect_outlier_rejection = true

The technique automatically rejects outliers which would lead to displeasing
low-frequency contributions which converge away only slowly. This is similar to the
firefly filter in Iray Photoreal. However, this means that some contributions are cut-off,
which can be disabled by setting the above option to false.

Fig. 5.1 - Simple indoor scene without (0), with coarse scale (1) and with fine scale (2) indirect lighting enabled.

5.6.3 Shadows

bool irt_area_as_point_lights = false
Approximate area by point lights, for example to avoid shadow noise during interaction.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 7

5 lray Interactive 5.6 Rendering options

Fig. 5.2 - Simple scene rendered with area lights approximated by point lights (left) and full area light sampling
(right)

mi::Sint32 irt_ambient_shadow_mode = 1
Allows to control occlusion tests for environment, instant sun and sky and ambient
lighting:
* @ — No occlusion

* 1 - Raytraced occlusion

* 2 — Screen space approximation, with directional occlusion tests for non-diffuse
materials. This mode is less precise than raytraced occlusion tests, but converges
faster to a noise free result. Noise results mainly from glossy components of the
material. View-dependent occlusion seen in glossy layers, such as seen on the
ground floor of the image, are retained.

* 3 — Screen-space ambient occlusion applied to all material layers. In this mode, less
noise is visible on glossy materials to the expense of losing directional effects in the
occlusion.

In modes 2 and 3, the influence region is controlled by the
irt_ambient_falloff_min,max_distance parameters and the radius is always
clamped to not exceed 200 pixels in raster space. In raytraced mode, this is only the case
when irt_ibl_falloff is true, otherwise the occlusion distance is unlimited.

Since ambient and IBL shadows can be turned off by setting the value to 0, the parameter
irt_ibl_shadows is now deprecated.

Note that modes 2 and 3 cannot be used in a multi-GPU setup for performance reasons.

Fig. 5.3 - Simple scene rendered with modes 0, 1, 2 and 3

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 72

5 lray Interactive 5.6 Rendering options

bool irt_shadows = true

Allows shadows to be forcibly turned off, independent of scene shadow flags.

bool irt_ibl_falloff = false

If this flag is enabled, the irt_ambient_falloff_min/max_distance parameters also affect
raytraced occlusion for IBL and instant sun and sky.

bool irt_ground_shadow_filter = true

Allows the filtering of the ground shadows of the implicit ground plane to be turned off.

bool shadow_cast = true

The per-instance bool shadow_cast flag controls whether an object is casting a shadow. It
is taken into account by the renderer if irt_shadows is enabled.

bool_shadow_recv = true

The per-instance bool shadow_recv flag controls whether an object will display the effect
of shadows cast by other objects (“receives” the shadow). It is taken into account by the
renderer if irt_shadows is enabled.

5.6.4 Additional approximations

Iray Interactive allows to trade quality against performance in various ways.

mi::Sint32 depth = 16, mi::Sint32 depth_reflect = 4, mi::Sint32
depth_refract = 4, mi::Sint32 depth_shadow = 16, mi::Sint32 depth_cutout
= 16
Maximum trace depth settings are respected by Iray Interactive. These values correspond
to the maximum total number of bounces, maximum number of reflections and
refractions, maximum number of shadow refractions and maximum depth for cutouts
respectively. The maximum total number of bounces does not influence the cutout depth.

Fig. 5.4 - From left to right: A glass object rendered with different trace depths 8, 6, 4 and 2

mi::Float32 irt_ray_importance_threshold = 6.02

If the contribution of a specular reflection or refraction bounce falls below this value it is
cut off. The lower the value the more accurate the result. The tradeoff is elapsed time.
Compared to limiting the trace depth, using this setting usually results in a better
performance-quality ratio.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 73

5 lray Interactive 5.6 Rendering options

Fig. 5.5 - From left to right: A glass object rendered with importance thresholds 0, 0.05, 0.1 and 0.4

mi: :Sint32 irt_render_mode = 1

When set to 0, the renderer is in interactive mode, depth of field and IBL shadows are
turned off and some additional approximations are used. When set to 1, the standard
refinement mode is used.

5.6.5 Antialiasing and filtering

Iray Interactive supports the filter parameter in the same way as Iray Photoreal (see
Rendering options (page 59) in Iray Photoreal).

bool irt_first_frame_antialiasing = false

FXAA antialiasing is applied by default to the first frame when irt_render_mode is set
to zero, improving in particular the appearance of sharp edges. FXAA is not available in
multi-GPU configurations.

mi::Sint32 filter = FILTER_BOX

Iray Interactive natively supports FILTER_BOX, FILTER_TRIANGLE and FILTER_GAUSS
filters for antialiasing. If FILTER_CMITCHELL or FILTER_CLANCZOS is requested, Iray
Interactive will use the default box filter instead.

mi::Float32 radius

The radius of the filter kernel. Recommended values are 0.5 for box filter, 1 for triangle
filter and 1.5 for Gauss filter.

bool iray_sharpen_filtering = false

To counter potential blurring effects caused by the antialiasing filters, or simply to
enhance the fidelity of the output image, one can select an adaptive sharpening filter.

mi::Float32 iray_sharpen_filtering_strength = 0.25

The strength /aggressiveness of sharpening. The supported range is from 0 to 1.

mi::Float32 iray_sharpen_filtering_balance = 0.75

This balances the enhancement between lower and higher frequencies in the image.
Higher values boost higher contrast areas, lower values affect more of the lower contrast
areas. The supported range is from 0 to 1.

bool iray_firefly_filter = true

Controls a built-in filter to reduce bright spots that may occur under some difficult
lighting conditions. Such bright undesired pixels are often called “fireflies”.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 74

5 lray Interactive 5.7 Path space filtering

The filter works best in combination with the built-in tonemappers. If a tonemapper is
not enabled, the filter estimates can be too pessimistic for some scenes, resulting in some
fireflies to still appear.

mi::Float32 iray_nominal_luminance = @

The nominal luminance is a hint to Iray Interactive on what is considered a “reasonable”
luminance level when viewing the scene. This luminance level is used internally to tune
the firefly filter and error estimate. When the nominal luminance value is set to 0, Iray
Interactive will estimate the nominal luminance value from the tonemapper settings. If a
user application applies its own tonemapping without using the built-in tonemappers, it
is strongly advised to provide a nominal luminance.

Recommendations: For visualization, a reasonable nominal luminance would be the
luminance value of a white color that maps to half the maximum brightness of the
intended display device. For quantitative architectural daylight simulations (using
the irradiance buffer), a reasonable nominal luminance could be the luminance of
white paper under average day light.

5.6.6 Environment map resolution

mi::Sint32 irt_environment_max_resolution = 2048

This parameter sets the maximum HDRI environment map resolution (width) used by
the renderer. All environment maps with a higher resolution are scaled down to this size.
This avoids high preprocessing times and device memory consumption for large
environment maps to the expense of higher image quality.

5.6.7 White mode

When “white mode” is enabled, Iray Interactive shades all the objects in the scene using a
special diffuse material whose default color is white (its color can be controlled with
white_mode_color, see below). The user has the option to prevent some material instances
from being overridden with the white diffuse material by creating a boolean attribute called
"exclude_from_white_mode" for those material instances (set to true).

bool white_mode_enabled = false

Enables the white mode.

mi::Color white_mode_color = mi::Color(0.7)

Controls the color of the special diffuse material for the white mode.

mi::Color white_mode_bsdf_weight = mi::Color(0.7)

Controls the color that will be output in the BSDF weight buffer for the objects with
white mode.

5.7 Path space filtering

Path space filtering (PSF) reduces image noise in Iray Interactive by selective averaging of the
shading results obtained in neighboring pixels. Over time the amount of averaging is
reduced, so that no permanent artifacts will be introduced to the final image.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 75

5 lray Interactive 5.8 Global performance settings

The following attributes on the I0Options class, shown here with their default settings, control
path space filtering:

bool irt_psf_enable = false
Enables path space filtering if set to true.

mi::Float32 irt_psf_geometry_filter = 1.0

This parameter controls the influence of geometric distance in the path space filter. The
recommended range is from 0.0 to 1.0. At 0.0, path space filtering is disabled. The default
1.0 represents the recommended best choice for this geometric distance influence. If
geometric details are too much blurred or disappear in initial frames, this parameter can
be reduced, which will preserve more geometric detail at the cost of additional noise.

mi::Float32 irt_psf_lighting_filter = 1.0
This parameter controls the influence of lighting differences in the path space filter. The
recommended range is from 0.0 to 1.0. At 0.0, path space filtering is disabled. The default
1.0 represents the recommended best choice for this lighting difference influence on the
filter. If shadow boundaries are too much blurred or disappear in initial frames, this
parameter can be reduced, which will preserve more shadow boundary detail at the cost
of additional noise.

mi::Sint32 irt_psf_convergence_frame = 50
To ensure convergence the similarity thresholds are automatically reduced over time to
avoid persistent filtering artifacts. The value of this parameter indicates the frame index
at which the thresholds reach their minimal value. Further frames are then minimally
filtered.

Path space filtering stores temporary light path information and increases the memory
demands on the GPU proportional to the image size. Both, memory and performance
overhead are independent of the scene size and shading complexity making PSF even more
beneficial for complex renderings.

Note: Using PSF on multiple GPUs would generate high inter-GPU synchronization
traffic, resulting in a significant loss of performance. PSF is thus automatically disabled
on multi-GPU configurations.

5.8 Global performance settings

The following parameters are shared by all render contexts which use Iray Interactive and are
set with the IRendering_configuration: :set_renderer_option method.

mi::Float32 irt_working_memory = "0.9"

This setting limits the amount of working device memory available to Iray Interactive as
a fraction of the total device memory. The working device memory is used internally for
temporary storage. It does not include memory required for scene and frame buffer
storage. The setting is only used as an upper bound. Iray will allocate as much free
device memory as possible up to the amount specified. By default the amount is set to
90increased working memory so his option should be set as high as possible.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 76

5 lray Interactive 5.9 Comparison with Iray Photoreal

5.9 Comparison with Iray Photoreal

Following is a list of key differences with Iray Photoreal:

* Physically based but not unbiased.
* Currently, no support for:
* Volumetric effects
* Non-specular refraction (frosted glass appears black)
* Motion blur
* Custom matte objects
* Full light path expressions
* Support for physically implausible flags:

* Objects — shadow_cast, shadow_recv Shadows are missing if not enabled in the
scene.

* Lights — shadow_cast

* Support for trace depth parameters: depth, depth_reflect, depth_refract,
depth_shadow

* Differences in behavior of directional lights and shadows when the environment dome is
enabled.

* The opacity of decals can only be controlled by the cutout value, but not
semi-transparent BSDFs. Furthermore, decals are not taken into account for shadows.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 77

6 Scene database

The following sections introduce the scene database element interfaces and an example
program that creates a scene programmatically by making calls to the Iray APL

6.1 Overview of the scene database elements

The following is a list of the Scene elements and the primary classes that implement them,
with links to detailed information about these interfaces.

6.1.1 Scene graph structure

IInstance

A scene element that adds a transformation and attributes to another scene element.
Every instance references exactly one scene element.

IGroup
A container for other scene elements. Typically used to structure scene elements.

See also the section Scene graph structure in the API reference.

6.1.2 Leaf nodes

ICamera

The viewpoint from which the scene is rendered. The camera points down the negative
z-axis.

ILight
A light source such as a spot, a directional, or an area light. A light points down the
negative z-axis.

IOptions
Scene-specific settings stored as a scene element. Settings are typically exposed as
attributes.

ITriangle_mesh

A triangle mesh, which is a type of polygon mesh. Incremental construction of triangle
meshes is supported.

IPolygon_mesh

A polygon mesh, which defines the shape of a polyhedral object. Incremental
construction of polygon meshes is supported.

ISubdivision_surface
A subdivision surface, which is a smooth surface represented by a coarse control mesh.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 78

6 Scene database 6.2 Creating a scene programmatically

IFreeform_surface
A free-form surface, which is used to represent objects from smooth patches with
(optional) trimming curves. Typically, a free-form surface object consists of several
surfaces.

IOn_demand_mesh
An on-demand mesh, which describes a triangle mesh in a much simpler format and is
provided on a user-specified callback. Often, this data is only needed temporarily.

See also the section Leaf nodes in the API reference.

6.1.3 MDL-related elements

IFunction_call
A function call, which is an instance of a formal function definition with a fixed set of
arguments.

IMaterial_instance
A material instance, which is a concrete instance of a formal material definition with a

fixed set of arguments.

See also the section MDL-related elements in the API reference.

6.1.4 Miscellaneous classes
IAttribute_container

A container that stores attributes only.

IBsdf_measurement

A scene element that stores measured BSDF data. A BSDF measurement typically
appears in a scene as an argument of an MDL material instance.

IDecal
A decal, which is a sticker-like object that can be applied to other geometry objects.

ITmage
A pixel image file, which supports different pixel types.

IIrradiance_probes
An irradiance probe, which is used to render the irradiance at certain locations in a scene.

ILightprofile

A light profile, which is a digital profile of a real world light. It typically appears in a
scene as an argument of an MDL material instance.

ITexture

A texture, which adds image processing options to images. It typically appears in a scene
as an argument of an MDL function call or MDL material instance.

6.2 Creating a scene programmatically

This section introduces:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 79

6 Scene database 6.2 Creating a scene programmatically

1. Core concepts about creating a scene by using API calls. Alternatively, a scene can be
created by importing a scene file.

* Comparison to scene file main.mi (page 82)

* Order of scene element creation (page 82)

* Procedure for scene element creation (page 82)
* Categorizing scene elements (page 83)

2. Example source file example_scene.cpp (page 312), which demonstrates how to create a
scene by using calls to the Iray API

6.2.1 Comparison to scene file main.mi

The example program example_scene.cpp (page 312) is very similar to
example_rendering.cpp (page 297). The key difference is that example_scene.cpp

(page 312) does not import a scene file; it calls the function create_scene() which constructs a
scene programatically by using calls to the Iray API.

This programmatically created scene is almost identical to the scene which is created by
importing main.mi. The key difference is that some features which are not needed in
example_rendering.cpp (page 297) have been ommitted in example_scene.cpp (page 312)
(some MDL material instances and the texture coordinates for the ground plane). The only
file loaded from disk is main.mdl, which contains the MDL definitions for the materials used
in example_scene.cpp (page 312).

6.2.2 Order of scene element creation

The various scene elements are created one-by-one in a bottom-up order (this is the same
order as in the main.mi file). Order is important as soon as references between database
elements are created.

A referenced DB element must already exist in the database when the reference is set. If a
top-down order is needed for some reason, you must delay setting the reference until after
the referenced database element is stored in the database.

6.2.3 Procedure for scene element creation

Creating a certain scene element is typically a three step procedure:

1. Create a scene element by calling ITransaction: :create.
2. Set up the properties of the scene element, including any attributes.

3. Use ITransaction: :store to store the scene element in the database under a name that
can be used later to re-access or to reference it.

Note: MDL material instances and functions deviate from this scheme because they
require the use of a dedicated factory function for the corresponding material or
function definition.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 80

6 Scene database 6.2 Creating a scene programmatically

6.2.4 Editing scene topology

After the scene elements have been created, the internal structure of the scene — its topology
— can also be modified. However, the effect of defining a new camera with
IScene::set_camera_instance on render contexts that already exist is undefined and may
vary between render modes. Instead, the current camera instance, acquired with
IScene::get_camera_instance, should be edited. Alternatively, all current render contexts
of the scene can be destroyed and recreated with the new camera instance. In all scenes,
however, the there must be a path from root group to the camera instance.

6.2.5 Categorizing scene elements

The different scene elements can be categorized as follows:

* Structural elements. Examples: instances and groups
* Leaf nodes. Examples: cameras, lights, geometry, and options
* MDL-related elements. Examples: materials and functions

* Miscellaneous elements. Examples: images, textures, light profiles, and BSDF
measurements

The details of the various scene element types is beyond the scope of this example. For
additional details, see the examples for MDL in example_mdl.cpp (page 242) and triangle
meshes in example_triangle_mesh.cpp (page 332).

6.2.6 Example - Creating a scene through the API

Source code
example_scene.cpp (page 312)

The example creates a scene through calls to the API, renders the scene and writes the
rendered image to a file.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 81

7.1

711

71.2

7 Geometry

The following sections describe geometric concepts and examples of their use.

Note: Iray uses a right-handed Cartesian coordinate system internally.

Creating triangle meshes

The following sections introduce core concepts about creating triangle meshes, storing them
as database elements, adding them to a scene graph, and retrieving and editing them:

* Creating a triangle mesh (page 84)
* Adding geometry to a scene (page 84)
* Retrieving and editing triangle meshes (page 85)

The program example_triangle_mesh.cpp (page 332) serves as an example implementation
of these concepts.

Creating a triangle mesh

To create a triangle mesh, you need to specify at least the following:

* The points (the position of the vertices) of the triangle mesh
* The triangles (as point indices)

In example_triangle_mesh.cpp (page 332), function create_tetrahedron is used to create a
tetrahedron with four points and four triangles.

Vertex normals are an attribute of the triangle mesh. In contrast to generic methods for
attributes supported by IAttribute_set, meshes provide their own methods to enable access
to mesh-specific attributes. In example_triangle_mesh.cpp (page 332), one normal per point
is specified; hence, the mesh connectivity is used to create and attach the attribute vector.

Adding geometry to a scene

After geometry has been created and stored as a database element, it is necessary to include it
in the scene graph (unless you do not want it to be part of the scene). The most common
approach is to create an instance node that instantiates the geometry, and to include that
instance in some group, for example the root group. The instance node allows you to share
the geometry between several instances while having different settings per instance. For
example, different instances typically have different transformation matrices, and might have
different attributes, for example different materials.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 82

7.1.3

714

7.2

7.2.1

7 Geometry 7.2 Creating polygon meshes

In example_triangle_mesh.cpp (page 332), function “setup_scene is used to create an
instance of each mesh and to set the transformation matrix and the visible and material
attribute. Both instances are then added to the root group.

Retrieving and editing triangle meshes

All triangle mesh data can be retrieved and changed by using the API. The example program
example_triangle_mesh.cpp (page 332) uses a Loop-subdivision scheme for triangle
meshes to subdivide a copy of the tetrahedron created previously.

It is possible to retrieve and change the number of points and triangles, as well as the point
coordinates or triangle indices. To access the mesh-specific attributes, you must acquire the
corresponding attribute vector. If you have obtained a non-const attribute vector you must
re-attach it to the mesh after you are finished with it.

Example - Using triangle meshes

Source code
example_triangle_mesh.cpp (page 332)

This example creates and manipulates triangle meshes. The MDL search path is specified by a
command-line argument. The rendered image is written to file.

Creating polygon meshes

The following sections introduce core concepts about creating and tessellating polygon
meshes:

* Creating a polygon mesh (page 85)
* Tessellating a polygon mesh (page 86)
* Example - Adding a polygon mesh to a scene (page 86)

The program example_polygon_mesh.cpp (page 273) serves as an example implementation
of these concepts. This program imports a partial scene containing definitions for the camera,
a light, and some geometry (a ground plane and a yellow cube). Using calls to the API, it
creates a red cylinder as a polygon mesh and tessellates a copy of it.

Creating a polygon mesh

To create a polygon mesh, you need to specify at least the following;:

* Specify the points (the position of the vertices) of the polygon mesh
* Polygons (as point indices)

In example_polygon_mesh.cpp (page 273), function create_cylinder is used to create a
cylinder with a regular N-gon as base. The actual data such as point coordinates and normal
directions is not hard-coded, but computed by the helper class Cylinder and based on a few
input parameters: radius, height, and parameter N of the N-gon.

To get a sharp edge for the top and base face, vertex normals are not specified per point, but
per vertex. Hence, the mesh connectivity cannot be used. A custom connectivity must be
used instead.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 83

7 Geometry 7.3 Creating on-demand meshes

Note: In the previous example, “Creating triangle meshes” (page 84), vertex normals are
specified per point and the mesh connectivity is used to define vertex normals.

The vertices are mapped to entries in the attribute vector as follows:

* All vertices of the top face are mapped to the same normal
* All vertices of the base face are mapped to the same normal

* Each two vertices on the edge between two adjacent side faces share one normal

7.2.2 Tessellating a polygon mesh

The ITessellator class is a functor that tessellates a polygon mesh and returns the
tessellated mesh as a triangle mesh. In example_polygon_mesh.cpp (page 273), the red
cylinder is tessellated and the result is added to the scene (with a blue material). The
tessellator does not support any options to control its behavior.

7.2.3 Example - Adding a polygon mesh to a scene

Source code
example_polygon_mesh.cpp (page 273)

This example demonstrates how to add a polygon mesh to a scene graph. For more
information, see “Adding geometry to a scene” (page 84).

7.3 Creating on-demand meshes

On-demand meshes are created using the ISimple_mesh interface in two steps:

1. Set the callback object that returns an instance of ISimple_mesh. This instance holds the
actual geometry data.

2. Set the bounding box and the maximum displacement.

7.3.1 Example - Using on-demand meshes

Source code
example_on_demand_mesh.cpp (page 261)

This example demonstrates an implementation of the abstract ISimple_mesh interface. The
program imports a partial scene containing definitions for the camera, a light, and some
geometry (a ground plane and a yellow cube). It then replaces the triangle mesh of the yellow
cube by an equivalent on-demand mesh.

This particular implementation represents fixed geometry: a unit cube centered at the origin
with face normals. In a typical application, this would probably be an adapter that adapts the
application-specific geometry format to the format expected by ISimple_mesh.

Note: The Cube class is such an adapter: it adapts the original data stored in m_points
and m_normals with their own index arrays to the data arrays expected by the
ISimple_mesh interface with a single index array m_triangles.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 84

7 Geometry 7.5 Creating free-form surfaces

7.4 Creating subdivision surfaces

The following sections introduce core concepts about the control mesh of a subdivision
surface and the instancing of objects:

* The control mesh (page 87)
* Instancing objects (page 87)

The program example_subdivision_surface.cpp (page 327), which serves as an example
implementation. The program imports a partial scene containing definitions for the camera, a
light, and some geometry (a ground plane and a yellow cube). Using the AP]I, it then creates a
subdivision surface and three instances of it with different approximation levels.

7.4.1 The control mesh

The control mesh of the subdivision surface is exposed as a polygon mesh with the limitation
that only triangles and quads are supported. (See example_polygon_mesh.cpp (page 273) for
an example for polygon meshes.) In example_subdivision_surface.cpp (page 327), a
simple cube is created. Additionally, the crease values of the edges of two opposing faces are
set to 1.0, which creates sharp edges in the limit surface (which is a cylinder). Without the
crease values the limit surface would be a sphere.

7.4.2 Instancing objects

The procedure to add the subdivision element to the scene database and the scene graph is
similar to the procedure previously used for the tetrahedron in example_triangle_mesh.cpp
(page 332) and the cylinder in example_polygon_mesh.cpp (page 273).

In the earlier examples, one instance of the element was created. In
example_subdivision_surface.cpp (page 327), three instances of the subdivision element
are created. Multiple identical instances share the same geometry. Each instance has its own
transformation matrix and each instance can have its own attributes. To show the subdivision
process in example_subdivision_surface.cpp (page 327), different approximation levels
are used for each instance.

7.4.3 Example - Using subdivision surfaces

Source code
example_subdivision_surface.cpp (page 327)

This example creates three instances of a subdivision surface with different approximation
levels. The MDL search path is specified by a command-line argument. The rendered image
is written to file.

7.5 Creating free-form surfaces

The following sections introduce core concepts related to the IFreeform_surface interface
and the use of the transform matrix of a sphere to create an ellipsoidal shape:

* Creating a free-form surface (page 88)
* Adding free-form objects to a scene (page 88)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 85

7.5.1

7 Geometry 7.6 Creating fibers

The program example_freeform_surface.cpp (page 229) serves as an example
implementation. The program imports a partial scene containing definitions for the camera, a
light, and some geometry (a ground plane and a yellow cube). Using the AP, it then creates
two free-form surfaces and adds them to the scene.

Creating a free-form surface

In example_freeform_surface.cpp (page 229), the function create_sphere is used to create a
free-form surface that represents a sphere. A representation as Bezier surface of degree 2 in
both directions is used. The sphere is centered at the origin; its radius is 1.0.

7.5.2 Adding free-form objects to a scene

7.5.3

7.6

7.6.1

In example_freeform_surface.cpp (page 229), two free-form objects are added to the scene:
a red sphere, and a blue partial ellipsoid. The free-form surface of the blue ellipsoid
represents a sphere; the ellipsoidal shape is created by using its transformation matrix. The
parameter range in U-direction is restricted to [0.0, 0.5] to cut away the part of the ellipsoid
that lies below the ground plane.

Example - Using free-form surfaces

Source code
example_freeform_surface.cpp (page 229)

This example creates three instances of a free-form surface with different approximation
levels. The MDL search path is specified by a command-line argument. The rendered image
is written to file.

Creating fibers

The following sections introduce core concepts related to the IFibers interface:

* The geometry of a fiber (page 88)

* The IFibers object (page 90)

* Adding a single fiber to the IFibers object (page 91)
* Example - Creating fibers (page 91)

The geometry of a fiber

Fibers are represented by three-dimensional curves, specified by a set of control points in
object space. The radius of a cylindrical cross-section defines the thickness of the fiber. This
radius can be specified for the length of the entire fiber or for each control point.

Four types of curves are supported: linear curves, uniform cubic B-splines, Catmull-Rom
curves and cubic Bezier curves.

In case of uniform cubic B-splines and Catmull-Rom curves a minimum of four control points
are required per fiber and define the first segment. Each additional control point defines a
new segment, as three control points are shared with the previous segment. Note that
repetition of identical vertices (also known as pinned curves), for example to enforce a
B-spline to pass through a vertex, is not supported and should rather be achieved using

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 86

7 Geometry 7.6 Creating fibers

‘phantom vertices’. Catmull-Rom curves start at the second control point and intersect all
subsequent control points except for the last one.

In case of linear curves a minimum of two control points are required per fiber and define the
tirst segment. Each additional control point defines a new segment, as one control point is
shared with the previous segment.

In case of cubic Bezier curves a minimum of four control points are required per fiber and
define the first segment. In order to define a new segment three additional control points are
needed, as only one control point is shared with the previous segment. Bezier curves start at
the first control point and end at the last one for each segment, ‘phantom vertices” are not
needed for Bezier curves to enforce passing through a vertex.

The methods of the interface specify whether attributes are assigned to the primitive (the fiber
instance) or to each control point. This assignment is defined using the following enum values:

FIBER_ATTRIBUTE_PER_PRIMITIVE
FIBER_ATTRIBUTE_PER_VERTEX

7.6.2 The fiber control points

The control points of a fiber define the shape of the curve. Figure 7.1 is a B-spline curve with
fourteen control points:

Fig. 7.1 - The control points (in red) shape the B-spline curve

Note that the B-spline curves in Figure 7.1 and Figure 7.2 do not extend to the first or last
control points, though those endpoints are used in defining the shape of the curve:

Fig. 7.2 - The first and last control
points are not part of the curve

To include the first and last control points in the curve, additional (“phantom”) points are
added that extend the set of control points. Figure 7.3 (page 90) shows the additional
phantom points (in green) and the resulting B-spline curve:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 87

7 Geometry 7.6 Creating fibers

Fig. 7.3 - Adding points (in green) to extend the curve

A phantom point is constructed by reflecting through the endpoint the point that preceded it.
Geometrically, this can be expressed as the addition of a vector to the endpoint, where the
difference of two points produces a vector that displaces the second point to the first.

Given control points p1, pz...ps, the phantom points can be defined geometrically by:

po=p1+(p1—p2)
Pl = Pn+ (Pn — Pn-1)
Algebraically, this simplifies to:
Xp = 2X1 — X2
Yo =2y1 — 12
and:
Xn+1 = 2Xp — Xp—1

Yni1 = 2Yn — Yn-1
Adding phantom points to the control points of Figure 7.1 (page 89) produces Figure 7.4:

Fig. 7.4 - Extending the curve of Figure 7.1 (page 89) to the beginning and ending control points

These diagrams demonstrate the construction of phantom points in two dimensions, but the
construction extends to three-dimensional control points as well.

7.6.3 The IFibers object

An instance of IFibers is created by a method of the ITransaction object:

Listing 7.1 — Creating the IFibers instance

IFibers xfibers = transaction->create<IFibers>("Fibers");

The following methods create and edit the attributes of the IFibers object:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 88

7 Geometry 7.6 Creating fibers

IFibers::create_attribute_vector

Creates an attribute for a fiber instance.

IFibers::attach_attribute_vector

Attaches an attribute to the fiber instance.

IFibers::access_attribute_vector

Returns a fiber attribute specified by its Mesh_attribute_name .

IFibers::edit_attribute_vector
Detaches and returns a fiber attribute specified by its Mesh_attribute_name.

Currently, the only supported attribute is a texture coordinate (attribute ATTR_TEXTURE)
defined by the first texture space. Only the first texture space is supported. Texture
coordinates may be 1-, 2-, or 3-dimensional.

7.6.4 Adding a single fiber to the IFibers object

Individual fibers are added to the IFibers instance by the IFibers: :add_fiber method.
The method returns an instance of Fiber_handle_struct.

Listing 7.2 — Adding a single fiber

const Fiber_handle_struct fiber_handle =
fibers->add_fiber(num_vertices_per_fiber);

The control points and their attributes are added to the fiber using the handle returned by
IFibers::add_fiber:

Listing 7.3 — Adding a fiber vertex and defining its attributes

int vertex index;
mi::Float32_3 vertex_coordinates;

fibers->set_control_point(fiber_handle, vertex_index, vertex_coordinates);
fibers->set_radius(fiber_handle, vertex_index, radius);

7.6.5 Example - Creating fibers

Source code
example_fibers.cpp (page 224)

The program example_fibers.cpp (page 224) demonstrates the creation of an IFibers
object with function create_fibers_ball. A series of single fibers are added to the IFibers
object. Each fiber is constructed beginning with a vertex on the surface of a sphere and a
series of vertices positioned increasingly farther away from it. Vertex positions are
randomized to create a spiraling structure for each fiber. The resulting IFibers object is
shaped like a ball of curly hair and is added to the scene just if it were a mesh.

The object is shaded using a multicolor material that uses the df : :chiang_hair_bsdf BSDF
defined in file main_hair.md1l. The MDL search path is specified by a command line
argument to the program. When rendering is complete, the resulting image is written to file.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 89

7 Geometry 7.7 Creating particles

7.7 Creating particles

The following sections introduce core concepts related to the IParticles interface:

* The geometry of particles (page 92)

* The IParticles object (page 92)

* Adding particles to the IParticles object (page 92)
* Example - Creating particles (page 93)

7.71 The geometry of particles

Particles are represented by a sequence of four floats, each one of these four floats specify the
center of a particle and its radius. At the moment, only spherical particles can be defined.

7.7.2 The IParticles object

An instance of IParticles is created by a method of the ITransaction object:

Listing 7.4 — Creating the IParticles instance

IParticles *particles = transaction->create<IParticles>("Particles");

The following methods create and edit the attributes of the IParticles object:

IParticles::create_attribute_vector

Creates an attribute for a particle instance.

IParticles::attach_attribute_vector
Attaches an attribute to the particle instance.

IParticles: :access_attribute_vector

Returns a particle attribute specified by its Mesh_attribute_name.

IParticles::edit_attribute_vector

Detaches and returns a particle attribute specified by its Mesh_attribute_name.

Currently, the only supported attributes are user attributes (attribute ATTR_USER, up to four
different ones) and the motion attribute (ATTR_MOTION). Particles also have UV values, the
same spherical mapping is applied to all the particles of a particle object.

7.7.3 Adding particles to the IParticles object

Individual particles are added to the IParticles instance by the
IParticles: :add_particle method.

Listing 7.5 — Adding a single particle

Float32 p[4];

particles->add_particle(p);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 90

7 Geometry 7.8 Tessellation and displacement

At the moment, only spherical particles can be defined so the size of the float array passed to
the add_particle method must be 4 (three floats for the position and one for the radius).

Particles can also be added all at once by the method IParticles::set_data method.

Listing 7.6 — Adding multiple particles

size_t num_particles = ...; Define number of particles

std::vector<Float32> p(num_particles * 4);

particles->set_data(&p.front(), num_particles);

Since a particle is defined by four floats, the float array passed to the IParticles: :set_data
method must contain four times as many floats as there are particles.

7.7.4 Example - Creating particles

Source code
example_particles.cpp (page 266)

The program example_particles.cpp demonstrates the creation of an IParticles object
with the function create_particles_cuboid. The particles are first drawn randomly inside
a cuboid and with a random radius, storing their position and radii in a vector of Float32,
then they are added all at once to the created IParticles object, which is then added to the
scene just if it were a mesh.

The object is shaded using a common diffuse material. The MDL search path is specified by a
command line argument to the program. When rendering is complete, the resulting image is
written to file.

7.8 Tessellation and displacement

The following sections introduce core concepts related to tessellation of geometry objects and
the application of displacement to tessellated geometry. The general controls for tessellation
are specified by setting the approx struct of IAttribute_set. The approx attribute is
applicable to geometry scene elements of type ITriangle_mesh, IPolygon_mesh,
ISubdivision_surface and IFreeform_surface and via inheritance to IInstance and
IGroup. Various types of refinement are available, specified via the field method in the approx

struct:

method value Type Applicable on Controls

0 Parametric All Subdivision via const_u
and const_v

1 Length in object space ~ All but subdivision-surfaces Length via const_u
2 Length in UV-space Triangle and polygon meshes Length via const_u
3 Distance Ratio Only free-form-surfaces constu
4 Adaptive All base_method, quality

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 91

7 Geometry 7.8 Tessellation and displacement

Tessellation semantics vary based on the surface type. For subdivision and free-form surfaces,
the newly generated vertices are defined by the subdivision scheme or the curve, respectively,
and are accordingly displaced from the defining surface. For triangle and polygon meshes the
newly generated vertices lie in the same plane as the original primitive, which means that the
geometric shape stays identical and no geometric detail is added. For this reason, by default
such meshes are only tessellated if displacement is present. However, this is controllable by
the following attribute:

mi::Sint32 enable_tessellation_of_undisplaced_meshes = false

If enabled, tessellation is being performed on triangle and polygon meshes without
displacement.

This is particularly useful in conjunction with the option to approximate smooth tessellated
geometry from vertex normals for triangle and polygon meshes. It can be activated with the
following attribute:

mi::Float32 approx_geometry_from_shading_normals = 0.0

Offsets tessellated vertices based on curvature implied by vertex normals. The default is
no offset, increasing this value up to the maximum of one allows to blend towards a
curved surface that better matches the shading normals. Note: For a workaround that
only influences the material and lighting computations, but not improves/refines the
actual geometry, see shadow_terminator_offset_mode.

To avoid excessive memory consumption with fine tessellation, the following attribute sets a
limit on the number of final triangles being generated. Note that this option is ignored for
free-form surfaces.

mi::Sint32 approx_triangle_limit = 10000000

Specifies an upper bound for the number of triangles generated. If the limit is exceeded
the next coarser approximation level which does not exceed the limit is used.

7.8.1 Parametric tessellation

Parametric tessellation subdivides each primitive regularly. Each edge of a primitive (triangle
or quadrangle) is evenly split into 2¢ parts, resulting in 4° primitives (for ¢ = const_u).
Higher order polygon input is triangulated before being subdivided.

For free-form surfaces things are slightly more flexible and there are separate controls per
axis. Here, each surface patch made up by a curve of degree d,, and a curve of degree d, is
subdivided into d,,- const_u -d,- const_v triangle pairs.

7.8.2 Length tessellation

Tessellation may also be driven by a minimum length which each edge of the resulting
primitive may not exceed. For this method, each axis is regularly subdivided until all
resulting edges are short enough. The length may be measured in object space or, for triangle
and polygon meshes, in UV-space as well.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 92

7 Geometry 7.8 Tessellation and displacement

7.8.3 Distance ratio tessellation

Distance ratio tessellation is limited to free-form surfaces. Here, the parameter const_u
provides an upper bound for the ratio of the distance of the approximation to the original
curve/surface and the length of the corresponding edge in the approximation. For example, a
value of 0.01 means that the error is at most 1/100 of the edge length in the approximation.
Typical values are in the range [0.01,0.1].

7.8.4 Displacement

Fig. 7.5 - Skin with displaced geometry to represent pores. Image courtesy of Marco Di Lucca.

Displacement of geometry is defined via the MDL material’s geometry.displacement field.
A function attached to this slot will be evaluated and applied to all vertices of the triangle
mesh. Note that the evaluation of the displacement function is currently limited to object
space in Iray.

Displacement will be clamped to the maximum displacement property of the mesh which
defaults to zero (no displacement). The value needs to be set using
set_maximum_displacement method of the underlying geometry object, for example:

ITriangle_mesh::set_maximum_displacement

Sets the maximum displacement distance vertices are clamped to.

Optionally, Iray Photoreal is able to ignore the maximum displacement property on all
geometry, via a global override that can be set using the following attribute on IOptions:

bool ignore_max_displace = false

If enabled, the maximum displacement distance is ignored on all geometry. Note that
Iray Interactive support for this feature is not implemented.

In order to appropriately represent the details of the displaced geometry, the input mesh
needs to be sufficiently tessellated. In addition to the aforementioned tessellation methods,
there is an adaptive algorithm specifically designed for displacement. It can be activated by
setting the method field in the approx struct to 4 (adaptive). The adaptive tessellation
comprises two passes. The first pass is driven by the base_method parameter and specifies
the initial subdivision. It has the same semantics as method and is driven by the parameters

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 93

7 Geometry 7.8 Tessellation and displacement

mentioned before. The second pass samples the displacement function to refine the initial
tessellation in areas where it is determined to be insufficient. It is controlled by the parameter
quality which steers the number of additional refinements the second pass may perform.
For a quality of zero, no additional refinement is applied, for a quality of one, up to 32
additional subdivisions per triangle edge may be performed.

(o

an

=

\
/

I

Fig. 7.7 - Adaptive displacement with quality 1.0 and the parametric base_method

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 94

8.1
8.1.1

8.1.2

8 Materials

Materials define the visual properties of objects, for example:

* The color, reflection and refraction, and light emission properties of surfaces
* The scattering and absorption properties of volumes

* Modified geometric properties of surfaces such as displacement and normal
perturbation (bump mapping)

Iray provides an example catalog of physically-based materials to apply to geometry, lights,
and cameras. These materials are defined using NVIDIA Material Definition Language
(MDL). Materials are defined based on distribution functions for reflection and refraction, for
volume scattering effects, and for light emission properties.

Material definitions define “what to compute.” The “how to compute” task is considered the
domain of the renderer. This split of responsibilities enables all Iray rendering modes to use
the same materials and is key to constructing a unified conceptual model of rendering.

Material Definition Language
Overview

NVIDIA Material Definition Language (MDL) enables users to define the reflective,
transmissive, emissive and volumetric properties of objects. It consists of two major parts:

1. A declarative material definition based on a powerful material model, and

2. A procedural programming language to define functions that can compute values for the
parameters of the material model.

Additional Information

The building blocks needed for part one, like elemental distribution functions, their moditfiers
and combiners, the MDL file format, and the organization in modules and packages is
explained in the NVIDIA Material Definition Language: Language Specification document
[MDLSpecification] (page 208). The NVIDIA Material Definition Language: Technical
Introduction document [MDLIntroduction] (page 208) gives an introduction.

Not all of part two is currently supported in all contexts of all NVIDIA Iray render modes.
Environment functions (page 127) are fully programmable in all modes. In some other cases,
expressions are restricted to a set of predefined functions and combinations of those, plus
constant-folding in the MDL compiler. The available predefined functions and where and
how they can be used is explained in the documentation for the base .md1 module. MDL state
transformations used in constant expressions are ignored (the identity matrix is used instead).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 95

8 Materials 8.1 Material Definition Language

The release tape contains some example MDL materials located in the directory
mdl/material_examples, which showcase some of the capabilities of the material definition
language and the texturing functionality exposed through the module base.mdl.

8.1.3 Integration in Iray

MDL materials and functions are used in the following places in Iray:

* MDL modules can be imported into the scene database through the IImport_api
methods. The special variable {shader} can be used as prefix in URIs to resolve the
relative suffix against the shader search paths. For example, the URI
{shader}/base.mdl imports the base module from the shader search paths. The import
creates database elements of the following classes to represent the corresponding MDL
elements:

* TModule

* TFunction_definition

Note: The MDL importer supports relative URIs only.

For resources in string-based MDL modules the following adjustments to the file path
resolution procedure in Section 2.2 of [MDLSpecification] (page 208) apply:

* The current working directory and current search path are undefined.

* The current module path is obtained from the fully qualified package name by

n,.n

replacing all "::" subtrings by slashes.
* Normalization of absolute file paths remains unchanged.

* Normalization of strict relative file paths always fails since the file required to exist
is treated as missing.

* Normalization of weak relative file paths behaves as if the file to test is missing; in
effect, a slash is added to the front.

* The consistency check for absolute and weak relative file paths always succeeds
(the preconditions of the check do not apply because current working directory and
current search path are undefined).

* A material definition can be cloned, albeit creating a new material with new default
values in a module using the IMd1_module_builder::add_variant() method. The new
default value can be function calls and thus whole material graphs can be created and
stored with this method.

* MDL modules can be exported from the scene database through the IExport_api
methods.

° A material definition can be instantiated with argument values for its material
parameters, which results in a IMaterial_instance database element. Parameters can
continue to be updated on material instances.

* A function definition can be provided with argument values for its parameters, which
results in a IFunction_call database element. Parameters can continue to be updated

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 96

8 Materials 8.1 Material Definition Language

on the function call. Function calls can be used in arguments to other function calls and
material instances.

* The material attribute can be used on geometric objects to apply a full MDL material to
the object and on lights to apply the emission characteristics of a MDL material to the
light. The material attribute references a MDL material instance represented by the
IMaterial_instance in the Iray APL

* A function call can be used to define the environment lookup function (page 127).
* A function call can be used to define the virtual backplate texture (page 139).

* The Iray API provides two wrappers Definition_wrapper and Argument_editor. The
first wrapper simplifies usage of the interface IFunction_definition. The second
wrapper simplifies usage of the interface IFunction_call.

8.1.4 Hair Materials and Fiber Geometry

Starting with MDL 1.5, MDL materials may specify a hair BSDF (material.hair) to describe
reflection and transmission characteristics of cylindrical fibers, such as hair and fur. If a
non-default constructed hair BSDF is present in the material, Iray uses that on fiber geometry
for shading. On non-fiber geometry the hair BSDF is also supported, but note that in absence
of actual local cylinder geometry the shading results may be inconsistent with expectations.
Fiber geometry in all cases is the preferred solution to use the hair BSDF, triangulated
geometry should only be used as a last resort (e.g. on legacy scenes/assets). In case no hair
BSDF is specified in the material, the regular BSDF is used on fiber geometry, too. Note that
for regular BSDF shading fiber geometry is always single sided (so only material.surfaceis
used) and opaque (i.e. transmission is discarded).

On fiber geometry, the following state is provided to MDL functions as
state: :texture_coordinate(index):

* The first texture space (index 0) provides a normalized texture coordinate from 0 at the
fiber start to 1 at the fiber end in the x-component, a normalized texture coordinate
around the fiber in y-component, and the fiber radius in world space in the z-component.

* The second texture space (index 1) contains per fiber texture coordinates as specified for
the IFibers object. If none are provided, it provides the coordinates of the fiber start
point in world space by default.

* The third texture space (index 2) contains per vertex texture coordinates as specified for
the IFibers object.

8.1.5 Bump mapping energy loss compensation

string iray_diffuse_bump_energy_compensation = all

Differences of shading and geometric normal cause energy loss for diffuse BSDFs as the
actual surface geometry then shadows parts of the shading hemisphere. This is most
pronounced for strong bump /normal mapping, where up to half of all energy is lost. Iray
by default compensates that energy loss. To restore the old legacy behavior one can use
"none" (no compensation), "brdf" (only diffuse reflection is compensated) and "btdf"
(only diffuse transmission is compensated). By default "all" (compensate both) is used.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 97

8 Materials 8.2 Measured materials

8.2 Measured materials

Iray supports the use of measured material data as building blocks in the material model of
the “Material Definition Language” (page 97). The more common scenarios for measured
materials are:

* Measured isotropic BSDF (page 100)
* Spatially varying BSDF (page 100)
* Measured reflection curve (page 101)

* Measured light profile (page 101)

Note that the measured data does not necessarily have to come from real measurements. On
the contrary, these representations can be very useful for working with synthesized data from
models that cannot be represented otherwise in MDL, such as a new BSDF model.

8.2.1 Measured isotropic BSDF

Measured isotropic BSDF data can represent measured reflection data (BRDF) as well as
measured transmission data (BTDF). Both are represented in a single file format, the MBSDF
file format documented in the appendix of the NVIDIA Material Definition Language: Language
Specification [MDLSpecification] (page 208). A single file can thus describe the full scattering
characteristics of a surface point.

The Iray API can load MBSDF files and represent them in the API with the
IBsdf_measurement class. This class allows the data to be edited and allows new
measurement data to be created in memory without a file format requirement. Values of this
class can be passed to suitable parameters of MDL materials.

In an MDL material, the measured data is represented with the bsdf_measurement type. It is
used as a parameter type on the df : :measured_bsdf type, which is an elemental BSDF that
can be used like any other BSDF type in MDL.

The df : :measured_bsdf type has a mode parameter to select which part of the measurement
— reflection, transmission, or both — is used. This parameter takes precedence over the
actually available data, which allows the testing of reflection and transmission contributions
independently. If this mode parameter asks for data that is not in the measurement, an error
results.

8.2.2 Spatially varying BSDF

To create spatial variety, you can use a parametric surface model and drive the parameters
from textures mapped to the surface. This representation has also been explored in the
measured materials context, where a measurement process fits a measurement to a chosen
material model and provides you with a set of matching textures to be used with that model.
Work in this area usually refers to this representation as a spatially varying BRDF, or SVBRDF
for short.

The flexibility of MDL allows you to create matching or closely matching parameterized
material models, for example, from a simple DGS model to a multi-lobed glossy car paint
with flakes. The measured textures can then be used to drive the resulting parameters. It
might be necessary to pre-transform those textures in the application to match the material

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 98

8 Materials 8.3 Editing and creating materials

model chosen, or it might be possible to transform them using the texture pipeline functions
in the base.mdl module.

8.2.3 Measured reflection curve

If the conventional Fresnel effect or the custom curve provided with the MDL material model
is not sufficient, you can also measure the reflection behavior of a surface and use that data.

The data is represented in MDL as an array of color measurements at equidistant angles from
zero to ninety degrees from the surface normal. There is no dedicated file format for this data.

Two building blocks in MDL work with a measured refection curve:

measured_curve_factor
Attenuates a single underlying BSDF based on the measured reflectance curve

measured_curve_layer
Layers a BSDF over a base BSDF based on the measured reflectance curve

8.2.4 Measured light profile

Light profiles represent far-field measurements of light source emissions. As a standard file
format, IES light profiles are supported in Iray.

The Iray API can load light profile files and represent them in the API by using the
ILightprofile class. This class only allows access to the data. There is no support to edit the
data or create new measurement data in memory. Values of this class can be passed to
suitable parameters of MDL materials.

In an MDL material, the light profile is represented by the 1light_profile type. It is used as a
parameter type of the df : :measured_edf type, which is an elemental EDF that can be used
like any other EDF type in MDL.

See also “Sources of light” (page 121).

8.3 Editing and creating materials

The following sections introduce typical MDL-related tasks such as modifying inputs of
material instances, creating new material instances, and attaching function calls to material
inputs:

* Modifying inputs of existing material instances (page 101)

* Creating new material instances (page 102)

* Attaching function calls to material inputs (page 102)

The program example_md1.cpp (page 242), which uses the scene main.mi to demonstrate
typical MDL-related tasks.

8.3.1 Modifying inputs of existing material instances

This section describes the steps for modifying the input of an existing material instance. In
particular, it explains how to change the color of the material instance yellow_material,
which is used for the cube and other scene elements in example_mdl.cpp (page 242).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 99

8 Materials 8.3 Editing and creating materials

To change the color, we retrieve the current argument expression and clone it to obtain a
mutable instance. Here, the argument expression is a constant and the get_value() method
gives access to its value. Alternatively, we could have created the value and the
corresponding expression from scratch as shown in the section below.

To set the value, the free function set_value is used. Alternatively, we could have retrieved
the interface IValue_color and used its set_value() method directly.

The new value is then simply set with the set_argument() method.

These steps are shown here in full detail for illustrative purposes. The helper class
Argument_editor can be used to simplify such workflows, as shown in the second code
block.

8.3.2 Creating new material instances

This section describes the steps for creating a new material instance and an example for its
use.

As described in the previous section, the material instance of yellow_material could be
shared by a number of scene elements. When the color of this material instance is changed,
then the change is reflected in all scene elements that use the shared material. To change the
color of the cube only, requires three steps: preparing the arguments of a new material
instance, creating the new material instance, and then attaching it to the cube. The steps are
described in more detail as follows:

1. Prepare an expression list that holds the arguments of the new material instance. This is
mandatory if the material definition has parameters without default initializers,
otherwise it is optional. In both cases, arguments can be modified after creation of the
material instance as shown above. Here, we create the new argument expression from
scratch.

2. Use the method create_material_instance() to create a new material instance from the
material definition mdl::main::diffuse_material (the same definition that was used for
yellow_material). The newly created material instance is stored in the database.

3. Replace the previously used material instance, yellow_material, with the newly
created material instance by changing the material attribute of cube_instance.

These steps are shown in example_mdl.cpp (page 242) in full detail.

8.3.3 Attaching function calls to material inputs

The preceding sections of this section focused on constant inputs for material instances. This
section describes how to connect another MDL function to the input of the material instance.

All arguments of material instances or function calls are expressions. There are two important
types of expressions: constants (represented by IExpression_constant) and calls
(represented by IExpression_call). In the previous two sections constants represented a
color. Now a call expression will attach a different MDL function to define the color.

The program example_mdl.cpp (page 242) shows how to apply a texture to the ground plane:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 100

8 Materials 8.3 Editing and creating materials

1. Create the necessary database elements of type IImage and ITexture, which will hold
the texture to be used.

2. Import the MDL module base, which contains the MDL function mdl::base::file_texture
to be used.

3. Instantiate the function definition mdl::base::file_texture with the argument texture set
to the database element of type ITexture created in step 1. Actually, the true name of
the database element representing the MDL function base::file_texture is not
mdl::base::file_texture, but quite a long name that includes the function signature.
Hence, the method IModule: :get_function_overloads is used to retrieve the exact
name of the database element without hard-coding it.

4. The return type of mdl::base::file_texture is the structure texture_return, which does
not match the desired argument type IType_color of the tint argument of the material
instance. Hence, the MDL function mdl::base:texture_return.tint is used, which extracts
the tint field of the texture_return structure. In this case, the helper function
get_function_overloads() was not used, rather the full name
mdl::base::texture_return.tint(::base::texture_return) directly.

5. The function definition is instantiated and its s argument is set to the instance of
mdl::base::file_texture.

6. The tint argument of the material instance used for the ground plane is changed to
point to the new function call. The program example_mdl.cpp (page 242) shows how
this step can be simplified using the helper class Argument_editor.

8.3.4 Example - Using MDL materials and functions

Source code
example_mdl.cpp (page 242)

This example imports a scene file, executes various MDL operations on the scene, and writes
the rendered image to a file.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 101

9 Decals

Decals are a first-class scene database element that allows you to place decals, such as stickers
and labels, on objects in the scene, give them full MDL materials on their own, place them in
space and selectively enable or disable them. The placement of decals on objects is physically
based insofar as they can be placed on either side of a surface, they can overlap each other,
and you can see through transparent decals and see other decals below it.

* Decal scene element (page 104)
* Placement of decals in space (page 105)
* Layering and placement of decals on objects (page 108)

* Selectively enabling and disabling decals in the scene graph (page 108)

9.1 Decal scene element

The decal scene element is represented through the IDecal interface. The implicit geometry
of a decal is a unit square centered at the origin in the x-y-plane facing positive z-direction.

A decal scene element has the following fields and attributes:

* A clipping box that restricts the effects of the decal. The clipping box is an axis-aligned
box defined in the object space of the decal. Note that the clipping box is different from a
bounding box here in that it is part of the modeling capability with decals and not a
conservative enclosure.

A projector that defines how the decal is applied to the object. Technically, a projector
returns for the current surface position the uv-coordinates that have to be used for the
material on the decal.

A projector is thus a MDL function in Iray. The supported MDL function is
base::coordinate_projection() with its coordinate_system parameter left at its
default value of texture_coordinate_object. Without a projector function, the decal
will use the uv-coordinates of the object itself, which is the default. This makes the decal
behave more like texturing but with a full material layered on top of the objects material.

With or without projector, in both cases a base::transform_coordinate() function can be
used in addition to transform the resulting uv-coordinates and thus position the decal in
texture space.

A texture space index to be used by the projector to temporarily store the uv-coordinates
for the decal material evaluation. The default texture space is 0.

* A signed integer priority value which is used to resolve the ordering in case of
overlapping decals. The default is 0 and negative values are allowed. A decal with
higher priority is placed on top of a decal with lower priority.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 102

9 Decals 9.2 Placement of decals in space

* A material attribute (not a field). This attribute is the same as for any other object,
except that decals support only a single material and not arrays of materials.

Materials on decals have a few restrictions:
* Materials are always thin-walled on decals.

* Front and back-side can have different surface properties. For example a label on a
glass bottle can have the logo printed on the front-side while the back-side has a
plain white paper surface.

* Decals support cutout opacity and transmissive materials.
* Emission is not supported.

* Normal maps are supported.

* Displacements are not supported.

* Volume properties are not supported, except that the IOR value is used in valid
thin-walled surface material effects, like in the Fresnel-driven selection between
reflection and transmission in the combined specular BSDF.

* An enum of type Decal_face_mode that controls whether the decal appears on the front
face (the default), the back face, or both faces of the objects surface. The face orientation
is determined w.r.t. the projection direction. The normal derived from the orientation of
the geometric primitives is not relevant. For non-thin-walled materials the decal is never
shown on the face with higher density.

9.2 Placement of decals in space

Decals are placed in space similar to geometry objects with instance transformations using the
IInstance nodes.

However, unlike geometry objects, decals are not independent scene objects and they (or
instances of them) are not connected in the scene graph using groups. Instead, decals or
instances of decals are attached to the scene graph with the decals attribute, for example, on
the geometry nodes themselves, on instance nodes or on group nodes.

The transformation between world space of the scene graph root group and the local object
space of the decal consist of the concatenation of the individual instance transformations from
the root group down to the node with the decals attribute and from there to the decal.

Decals can be instanced multiple times much like geometry objects, for example by using a
decal in several instances, or attaching it to a node that is instanced multiple times. In
addition, a decal or instances of a decal can be attached multiple times at different nodes, or
even at the same node, for example, with different instance transformations.

This mechanism of placing decals in the scene and positioning them can be used to achieve
different dynamic behaviors on scene updates. For example, given a car modeled with a car
body and a movable door, a single decal can be used to place a sticker across the door and car
body. When the door opens, the following two interesting scenarios can be modeled as
detailed below:

1. The conventional behavior of decals would leave the decal stationary, so that the decal
keeps projecting, now distorted, onto the door.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 103

9 Decals

9.2 Placement of decals in space

2. The part of the decal projecting onto the door rotates with the door and behaves like a

sticker glued to the car.

The following two figures illustrate the scene graphs that model these two scenarios. In both,
the transformation T2 is used to rotate the door.

|

Group

decals: D1

Instance
transform: T1

Instance
transform: T2

Instance D1
transform: T3

A A
Geometry Geometry
car body door

A

Decal

Fig. 9.1 - The geometry is modeled conventionally with instances

connecting to a group.

In Figure 9.1, attaching the decal with its own instance to the same group keeps all involved

transformations, T1, T2 and T3, independent from each other.

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

104

9 Decals

9.2 Placement of decals in space

> Group |«

Instance Instance
transform: T1 transform: T2
€--- - EEEES 4
decals: D1 decals: D2
A A
Instance D1 Instance D2
transform: T4 transform: Ts,

Instance
transform: T3
Geometr Geometr

y Decal y
car body door

Fig. 9.2 - The geometry is modeled identically to Figure 1, but the decal is

now attached to the geometry instances.

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

105

9 Decals 9.4 Selectively enabling and disabling decals in the scene graph

In Figure 9.2 (page 107), attaching the decal to the geometry instances effectively instances the
decal twice. This makes the decal dependent on the geometry transformations, T1 and T2. In
addition to the single instance transform T3, which transforms and positions the decal in one
piece, this example adds two more instance transforms, T4 and T5. These two transforms
independently place the decal on the car body and the door. For example, an initial setup
would initialize T4 to the inverse of T1 and T5 to the inverse of T2, resulting in the same
initial placement of the decal as in the modeling of Figure 9.1 (page 106).

9.3 Layering and placement of decals on objects

Decals can overlap each other and they can be visible on the front side or the back side of a
surface.

When overlapping, decals create physical layers that determine the visibility of the decals.
Transparency and cutout-opacity is also supported in that a transparent material of a decal
allows you to see the decals below.

The order of overlapping decals is determined by their priority. A decal with a priority
greater than another decal is above the other decal. If they are of equal priority, the decal that
comes first in the sequence of decals in the decals attribute is above the other decal.

You can use the enum field value of type Decal_face_mode to control on which side of a
surface the decal is visible, the front side, the back side, or both sides. The front side of a
surface for the purpose of decal visibility is the side whose angle between the implied face
normal and the projector direction is larger than 90 degrees. The other side is the back side. If
there is no projector then the front side is defined by the orientation of the surface primitives.

In addition, for surfaces with a non-thin-walled base material, a decal is never shown on the
side with the higher density, determined by the side with the higher index-of-refraction value.
For example, this difference will be relevant for a label on a glass bottle using a cylindrical
projector when the label should only be seen on the outside of the bottle However, a label on
the inside of the bottle can be made visible with the DECAL_ON_BACK_FACE value for the
Decal_face_mode enum value.

9.4 Selectively enabling and disabling decals in the scene graph

By default, all decals attached with the decals attribute are visible on all objects below the
node where the attribute is attached.

The additional attributes, enabled_decals and disabled_decals, give you more
fine-grained control over which decals are visible on which object. To understand their
behavior, attribute inheritance needs to be understood for these attributes.

The inheritance of the enabled_decals and disabled_decals behaves like all other
attributes. If they are not set explicitly, enabled_decals will be set to the value in decals by
default, and disabled_decals will be empty by default, effectively making all decals visible
under the rules explained below.

The inheritance of the decals attribute is special: the array elements of the child are always
prepended to the array elements of the parent. Note that inheritance does not change the
behavior of transformations explained above.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 106

9 Decals 9.4 Selectively enabling and disabling decals in the scene graph

All three attributes are inherited down the scene graph and end in a geometry leaf node. A
decal is now visible on a geometry leaf node if and only if it is listed in the decals attribute
and in the enabled_decals attribute but not in the disabled_decals attribute.

The interplay of these rules can lead too fairly complicated constellations. We thus
recommend to look first at a simple policy and see if it suffices to realize the desired modeling
and workflow needs. The following example can serve as one.

One policy could be to attach decals at the root group — they will not move with the
geometry then — and select their visibility explicitly at the instance nodes referencing the
geometry. The example scene graph shown in Figure 3 illustrates this by modeling the tires of
a car with four instances of the same tire geometry. The two decals in the scene graph are
attached to the root group and each instance defines the enabled_decals attribute to define
all the decals that are visible for this tire. In this example, decal D1 is visible on all tires and
decal D2 only on the fourth tire.

1

Group

decals: D1 , D2 -_ -_-_-_-_-_-:_-_-_ -_- _-_-_-_-::_-:: Tt .:

Instance D1
transform: T1

Instance D2
transform: T2

Instance D3
transform: T3

Instance D4
transform: T4

enabled_decals: D1 l

I enabled_decals: D1 l

I enabled_decals: D1 l

I enabled_decals: D1, D2 l(

A A A A
e eeeeeeeeeaeeaaen] Instance D1 Instance D2
"" transform: Tg transform: T6
Geotrirrleetry Decal Decal

Fig. 9.3 - A scene graph modeling four tires of a car with instancing and illustrating the use of the root group

The placement of all decals in the root group implied that they will not move with the
geometry. For the decal D1 that is visible on all four tires, this also means that it is not
positioned by the instance transformtions to be at the same place on all four tires. To model
that, the decal would need to be attached to the four instance nodes.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 107

10 Inhomogeneous volumes

Inhomogeneous volume support provides the ability to render effects like clouds, smoke or
tire, but can also add structure to subsurface scattering materials. For the first use case there
exists a special scene element type, while for the latter only a change to an existing MDL
material is required. This chapter covers the setup for both application cases.

10.1 Volumetric textures

Since both use cases require a volume definition, Listing 10.1 is an example of such a material:

Listing 10.1

export material inhomogeneous_volume(
uniform texture_3d density = texture_3d("/smoke.vdb"),
uniform color albedo = color(®@.5f),
uniform float4x4 transform = float4x4(1.ef),
uniform float density_multiplier = 1.0f,
uniform bool density_relative_to_size = false,
uniform color ior = color(1.0f))
= let {
base::volume_coefficients ¢ = base::lookup_volume_coefficients(
density, albedo, 1-albedo, color(@), color(@), transform,
density_multiplier, density_relative_to_size);
} in material(
surface: material_surface(
scattering: df::specular_bsdf(mode: df::scatter_reflect_transmit)),
ior: ior,
volume: material_volume(
scattering_coefficient: c.scattering_coefficient,
absorption_coefficient: c.absorption_coefficient)

);

The most important property is the 3d texture density which loads the OpenVDB! dataset
named smoke . vdb for this example. Only VDB files are supported as valid input textures.
The VDB format specifies inhomogeneous data on an integer grid, along with an internal
transform of the raw volume data which places this data into world space. The function
base: :lookup_volume_coefficients takes a sample in object space, but if the instance
transformation of the object is an identity matrix, this directly reflects to the world space. The
region in space for which volumetric data exists will be referred to as the VDB domain in the
following sections.

1. https://www.openvdb.org/

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 108

https://www.openvdb.org/

10 Inhomogeneous volumes 10.1 Volumetric textures

A VDB file may contain more than one data channel. In this case a specific channel can be
selected as specified by MDL.

10.1.1 Colors

Depending on the value type of the selected channel, the data is either interpreted as scalar
(one or two values per texel) or as tristimulus color (three or four values per texel). Note that
in case of two or four values existing per texel, the last component is ignored. When using a
tristimulus color channel as input, the data is assumed to be in the rendering color space
without conversion. However, if rendering in spectral mode (“Spectral rendering” (page 55)),
these input values are converted into a spectral representation on the fly using the method
described in Ray Tracing Gems 2 [Jendersie21] (page 208).

The base: :1lookup_volume_coefficients function takes four colors as input. For both
scattering and absorption, a multiplier and an offset enable a single inhomogeneous value to
be read from the VDB file and used in various ways. Figure 10.1 show different possible
configurations. Note that negative numbers are allowed.

Constant albedo: Constant absorption: Variable albedo: Variable absorption:
Scattering=0.9"D+0, Scattering=1*D+0, Scattering=1*D+0, Scattering=0*D+0,
Absorption=0.1*D+0 Absorption=0*D+1 Absorption=-1*D+1 Absorption=1*D-0.1

Fig. 10.1 - Example usage of volume parameters to achieve different effects with a single inhomogeneous data
source “D”. The numbers are read “color(x)” for the respective multiplier or offset.

10.1.2 Density relative to size

Fig. 10.2 - Volume at original size (left), a scaled volume with density scale set to true (middle) and without
scaling (right).

The last parameter density_relative_to_size of base: :1lookup_volume_coefficients
handles how the instance transform affects the volume’s density. If enabled, a reduction in

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 109

10 Inhomogeneous volumes 10.2 Inhomogeneous volumes as subsurface materials

size will cause an increase of the density and vice versa, such that the optical appearance of
the object is preserved. A scaled object with relative scaling enabled will have a similar
appearance to a scaled image of the original volume.

Otherwise, when setting this option to false, the physical density of the medium will be
preserved. A scaled object will therefore become more or less opaque, as seen on the right in
the image. Disabling density scaling is to be preferred if, for example, the physical medium is
defined once and used in several object instances to increase scene variation.

10.1.3 Interpolation

Data values in the volume are interpolated using a trilinear texture filter.

10.2 Inhomogeneous volumes as subsurface materials

Fig. 10.3 - Procedural inhomogeneous volume applied
as a subsurface scattering texture

A material like inhomogeneous_volume in Listing 10.1 (page 110) can be attached to any
object as usual. Subsurface scattering effects within the object will then feature varying
density.

The object itself defines the boundary hull for all volume lookups. Materials within mesh
bound objects are always subject to the usual volume stack. If a mesh object overlaps with a
volume object (page 114), only the material of the mesh object will be used on the inside. If
two mesh objects overlap, one of the two subsurface materials is used exclusively depending
on the intersection order of the surfaces.

Note that when attaching a material to an object, and the object’s boundary is outside of the
domain of the volumetric data, the object appears to be empty. It is still possible to see the
boundary depending on the surface material, but there would not be any volumetric
interaction on the inside. To match object boundary and volume domain, transform can be
used: Setting it to map the VDB domain into the bounding box of the object is a useful
starting point.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual j1(0]

10 Inhomogeneous volumes 10.2 Inhomogeneous volumes as subsurface materials

Transformations to the object also apply to the volume. Translation or rotation do not change
the object’s appearance while scaling may cause density changes (see “Density relative to
size” (page 111)).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual m

10 Inhomogeneous volumes 10.3 Volume objects

The ior and surface properties of the material are respected by the mesh boundary. This can
be used to render, for example, a cloud in a glass ball or similar effects.

10.3 Volume objects

Fig. 10.4 - A cloud rendered using a volume object.

Volume objects are another scene element opposed to meshes. They are explicitly designed
for volumetric effects like fire, smoke, clouds or fog and have numerous advantages over the
subsurface scattering from the previous section.

* Overlaps are handled additive in density. You can even mix volumes with different
colored particles or scattering functions smoothly. Doing the same with a mesh
boundary would fallback to the material stack and either material would be used
exclusively in the overlapping region.

¢ Nlumination of volumes from small lights sources will have significantly less noise.

* INlumination on other scene objects from emissive volumes will have significantly less
noise.

* Having lights or the camera partially inside the volume and partially outside is possible.

* Support of clipping planes works better, because volume objects can be entered or left
through a clipping plane reliable. While the inner medium of a mesh might be detected
as well, the latter can fail as it depends on normal orientation. Especially, other objects
embedded inside the volume can make problems in mesh-based volumes.

The key difference is that volume objects are not restricted by explicit boundary hulls.
Instead, these are clipped to the VDB domain and all surface properties, as well as the index
of refraction, are ignored for volume objects. Using transform in the MDL material or the
volumes’ bbox selects a subregion of the volume, which is clipped to the VDB domain
boundary.

Other, potentially transparent or refracting, objects can be embedded inside volumes. The
volume will be clipped on the inside of the embedded objects. That means inside any object
its subsurface scattering properties will be used and not that of the surrounding volume. This

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 12

10 Inhomogeneous volumes 10.4 Emission

does not apply to thin-walled objects because they do not have an inside by definition. These
clipping objects may be fully transparent to enforce some cipping of the volume only. As
another example, clipping also enables scene modeling that prevents volumetric data from
leaking into the interior of objects, like an airplane flying through clouds. However, the
airplane must consist of a watertight mesh to avoid the appearance of clouds on the inside.

10.3.1 Example - Creating a volume object

The volume creation process is similar to the creation of other scene elements. However,
special care must be taken when setting the volume object bounding box and transform. The
volume’s bounds define where clipping will take place. If these bounds are outside the VDB
domain then nothing will be visible, but if the bounds only cover a small fraction of the
domain, it will clip the volume accordingly. A reduction of the bounding box will cause a
clipping in grid space, while a change of the transformation matrix will clip in world space.
Keep in mind that both parameters form an invisible, oriented box as the boundary of the
volume. The actual data stays at the same position and orientation — only the window to that
data will be changed. To transform the volume as a whole, the transformation of the instance
can be used.

Note that it is also possible to achieve a clipping effect by using the UVW transform
parameter within base: :1lookup_volume_coefficients. In effect, this moves the data
without compromising the volume object boundary or the mesh boundary.

A code example that loads an OpenVDB file and sets the proper bounds and transformations
is given here:

Source code
example_volumes.cpp (page 342)

10.4 Emission

Fig. 10.5 - A fire using inhomogeneous

© 2024 NVIDIA Corporation NVIDIA KB ETISSION: Manual n3

10 Inhomogeneous volumes 10.4 Emission

A volumetric medium may emit light on its own. Prominent examples are flames and
gas-discharge lamps. To describe those, you can assign a value to the emission_intensity of
MDL volume materials. For example, Figure 10.5 (page 115) shows an MDL material
assigned to the geometric structure typical of flames.?

In the case of uniformly glowing bodies a simple constant color suffices. The emission of
flames is more involved as it requires proper inhomogeneous data or procedural functions.
Most tools that simulate explosions and fires provide this in form of a temperature field in a
VDB file that is then used to generate blackbody emission. The MDL base function
volume_blackbody_emission simplifies the creation of such objects:

Listing 10.2

color volume_blackbody_emission(

uniform texture_3d temperature, Temperature in arbitrary units

uniform texture_3d density = texture_3d(), Density of emissive particles

For custom units, use
uniform float temperature_mult = 1.0f, temperature_mult toconvertthe
temperature texture values to Kelvin

For custom units, use
temperature_offset to convert
the temperature texture values to
Kelvin

uniform float temperature_offset = 0.0f,

uniform float scale = 1.0f, Scale final emission

uniform color tint = color(1,1,1) Arbitrary color modification

);

The first and most important input is the temperature field that is provided together with the
usual density in appropriate VDB files. In the above API example, a field selector must be
passed to the creation of the volume texture, as in Listing 10.3:

Listing 10.3

int result = volume_data->reset_file("fire.vdb", "temperature");

Since these files are sometimes in meaningless or incorrect physical units, the
temperature_mult and temperature_offset here can convert the sample values from the
texture to degrees Kelvin. For example, if the input file provides the temperature in Celsius,
an offset of 273.15 can be used to convert to the Kelvin scale. Below roughly 800K there will
be no visible emission; for textures with such values, the multiplier and offset should be
increased.

2. Scene assets used under the Creative Commons license:
https://creativecommons.org/share-your-work/public-domain/cc@/
Fire: https://jangafx.com/software/embergen/download/free-vdb-animations/

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual n4

https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://jangafx.com/software/embergen/download/free-vdb-animations/
https://jangafx.com/software/embergen/download/free-vdb-animations/

10 Inhomogeneous volumes 10.4 Emission

The density input is used to describe the amount of hot particles (opposed to their
temperature). A larger density directly transforms into a brighter emission, but usually the
absorption of the medium should increase in this case as well. If no input is supplied, a
uniform density of one is assumed. This might already be satisfying, but is usually not the
proper model of fire. If no explicit density of emissive particles is given, consider using the
same density input that is used for the other volume coefficients.

Finally, scale and tint can be used to adjust the final brightness and to modify the color.
Listing 10.4 shows an example MDL shader that was used for the introducing image

Listing 10.4

export material blackbody_volume(
uniform texture_3d density = texture_3d(),
uniform texture_3d temperature = texture_3d(),
uniform color albedo = color(0.7, 6.7, 0.7),

uniform float density_multiplier = 1.0,
uniform float anisotrophy = 0.9,
uniform float temperature_offset = 0.0f,

uniform float temperature_mult = 1.0f,
uniform float emission_scale = 1.0f,
uniform color emission_tint = color(1.6f, 1.6f, 1.06f)

let {
float save_density_mult = math::clamp(density_multiplier, -1e16, 1e16);
base::volume_coefficients ¢ = base::lookup_volume_coefficients(
density, albedo, (1-albedo), color(@.6f), color(@.6f),
float4x4(1.0f), save_density_mult, false);
} in material(
surface: material_surface(
scattering: df::specular_bsdf(mode: df::scatter_reflect_transmit)),
ior: color(1.0),
volume: material_volume(
scattering_coefficient: c.scattering_coefficient,
absorption_coefficient: c.absorption_coefficient,
emission_intensity: base::volume_blackbody_emission(
temperature,
density,
temperature_mult, temperature_offset,
emission_scale * density_multiplier, emission_tint
),
scattering: df::anisotropic_vdf(
directional_bias: anisotrophy

)

Note that you are not limited to the use of volume_blackbody_emission. If your input VDB
contains final emission, you can fetch the texture more directly within the shader.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual ns5

10 Inhomogeneous volumes 10.6 Atmospheric ground fog

10.5 Restrictions

Though there is no direct limit for the maximum number of volumes, you should only use a
small number of volume instances. Where feasible, multiple volumes should be combined
into a single VDB file to improve performance.? In general, any number of volumes takes
considerably more time than surfaces, usually with more initial noise.

* There is no repeat or clamp handling at the boundaries of a volume. Every position
outside the volume will feature zero density.

* Using at most one base: :1lookup_volume_coefficients per material with all its
parameters being deducible at compile time is much faster than other configurations.
The same is true for base: :volume_blackbody_emission where both can be used
together like in the example above. Any custom function on any of the volume
properties will trigger the much slower code path.

* The voxel format must be either float or float3 using the standard grid layout in VDB.
* Trilinear interpolation is the only interpolation method.

* Volume hits will be either black or invisible in auxiliary canvases. For details see the
restriction of result canvases (page 46)

10.6 Atmospheric ground fog

Fig. 10.6 - Ground fog applied to Albert Mansion. (Scene courtesy of Daz 3D.)

In Iray, ground fog is implemented with a simple built-in volume type to place a height
dependent mist into a scene. Above a threshold height the volume’s density decays
exponentially until it vanishes. Below that height the volume has a uniform density.

3. https://www.openvdb.org/documentation/doxygen/codeExamples.html#sCombiningGrids

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 16

https://www.openvdb.org/documentation/doxygen/codeExamples.html#sCombiningGrids
https://www.openvdb.org/documentation/doxygen/codeExamples.html#sCombiningGrids

10 Inhomogeneous volumes 10.6 Atmospheric ground fog

The fog must be enabled by setting iray_ground_fog to true. Following parameters define
the appearance of ground fog:

iray_ground_fog_albedo
A color in [0.0,1.0] to modify the absorption of fog particles.

iray_ground_fog_height®

Ground level reference height in meters. Below that height the volume has density
iray_ground_fog_density®; above that height it decays exponentially.

iray_ground_fog_density®

A colored extinction coefficient for the fog density on the ground level. The value is a
positive unbound density of particles per meter. Higher densities are more opaque.

iray_ground_fog_height1
A second height in meters which must be larger than iray_ground_fog_height®@.

iray_ground_fog_density1
A colored extinction coefficient for the fog density that is reached at
iray_ground_fog_height1. Above that height the fog continues to decrease in density.
The value must be smaller or equal density0 and will be clamped otherwise. If both
values are equal in any component, the fog becomes uniform. Note that the uniform fog
still extends to infinity and will thus block all light from infinite environments.

iray_ground_fog_scattering_type

Sets the volume distribution function for the particles in this volume. Can be either "hg"
or "approx_mie" which map to df: :anisotropic_vdf and df::fog_vdf in MDL
respectively.

iray_ground_fog_anisotropy

Scattering anisotropy of the Henyey-Greenstein phase function in [-1.0,1.0]. A value of
-1.0 results in (specular) back scattering, 0.0 is isotropic scattering and 1.0 is (specular)
forward scattering. This is only used when the scattering type is "hg".

iray_ground_fog_particle_size

When the scattering type is "approx_mie" this sets the water droplet diameter in micro
meters. Common particles sizes for fog and clouds go from 5 to 16 micro meters. At zero
micro meters this becomes Rayleigh scattering.

All parameters together define a slab where the density at the lower and the upper boundary
are explicitly controlled. The exponential decay is derived from these values by:

decay = (height® - height1) / log(densityl / density9)
The decay value is used to obtain the final extinction coefficient sigma_t by:

sigma_t(height) = density® * exp(-max(©, height - height®) / decay)

10.6.1 Best practice

Setting the parameters of the ground fog often behaves unintuitively for humans due to its
nonlinear behavior and the fact that it extends unbounded in both directions. It is possible to

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual n7

10 Inhomogeneous volumes 10.6 Atmospheric ground fog

drop the upper density on the user side and instead compute a relative value based on the
lower density. The smaller that value, the less fog will be visible at the upper high, but it will
also push down the perceived heigh a lot. A factor of 1/1024 makes the fog very thin at the
top, although still noticeable, and works quite well. It essentially results in a halved density at
10% between the two heights, a fourth of the density at 26% and so on.

The second hard to steer parameter is the remaining density®@. Setting the extinction gives us
direct control over the physical property but is relatively meaningless to us. A possible
alternative is to define an expected free flight distance by:

density® = 1 / ref_distance

where ref_distance is the new user parameter that specifies the expected distance at which
a fog particle will be hit. Instead of the constant 1 it is also possible to use 1log(2) in which
case the ref_distance would specify the distance at which 50

A further source of confusion can be the color. Often, selecting a color with a color picker
results in an unexpected result of the inverse color. There are two parameters that influence
the behavior with respect to color that can be changed individually or at the same time. First,
the iray_ground_fog_albedo sets the color of fog particles. As long as the extinction is gray
valued this means that any light that is not scattered is only darkened over distance. Only
inscattered light will be tinted by the albedo or a multiple thereof, if scattered several times.
Second, both iray_ground_fog_density values can be used to change the color of
transmitted light. A higher value in one color channel means that the light is more likely to
hit a particle in that particular channel. A light source seen through the fog will show the
inverse color of what is defined, but inscattering will add more light of the respective color
assuming a gray valued albedo. This is useful to model aerial perspective with the ground
fog. Our atmosphere scatters blue light much stronger than green or red light. For example
using a color of (8.1,0.2,0.4) with different scales for the two densities and an albedo close
to one produces this effect.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual n8

11 Sources of light

Traditional computer graphics definitions of the source of light in a scene are based on
simplifications of position, direction and a simple model of the directed illumination
provided by spotlights. Later light source models included geometric extent from which light
was emitted, called area lights. As a special case of area lights, a sphere of infinite radius
around a point, the environment, defined a mapping of position to light intensity, represented
either as a texture map or as a function returning intensity values.

To these traditional lighting concepts, Iray adds the ability to define any surface as emissive
through its material definition defined by the “Material Definition Language” (page 97) (MDL).
This definition applies the idea of a distribution function to light emission. The components
of the definition describe how light is emitted at a single point on the surface. The combined
emissive effect of all points defines the emissive behavior of the surface as a whole.

1.1 Concepts of light representation in Iray

For a single point on an emissive surface, all light energy will be emitted into the hemisphere
defined by the surface normal at that point. In Figure 11.1, this is represented in a simplified
form in two dimensions (like a slice of the real three-dimensional scene). A single direction
within this hemisphere represents the fundamental concept in MDL's light emission model.

Fig. 11.1 - The hemisphere over a point
on an emissive surface

Light from a point on an emissive surface that is emitted evenly in all directions is called
diffuse emission (by analogy to diffuse reflection). In Figure 11.2 (page 122), the evenly
distributed illumination of diffuse emission is represented by arrows that are the same length
in all directions.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 19

11 Sources of light 1.1 Concepts of light representation in Iray

Fig. 11.2 - Diffuse emission from a point
on a surface

In many emissive objects in the world, however, light will be emitted unevenly in different
directions. MDL defines the way that light is distributed from a single point on an emissive
surface by its emission distribution function (EDF). In Figure 11.3, the length of each arrow
represents the amount of light emitted in that direction.

Fig. 11.3 - Variations of the emission distribution function (EDF)

The emission distribution function only defines the distribution properties of a single point on
the surface. The sum of the emissive values of all points (the integral over the surface) defines
the total emission of the surface itself. This calculation is done by Iray; the specification of
emission by the user of MDL is through the definition of the EDF and the radiant exitance, a
measure of how much energy is available for distribution into the hemisphere at each point.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 120

11 Sources of light 1.2 Emission distribution functions

A\~

Fig. 11.4 - The total emission of the surface is the sum of the emission of the all the points on the surface

MDL also can specify what coordinate system is used as the reference framework for the
evaluation of emission at points on the surface (represented by the red lines in Figure 11.5)
This capability provides directional control useful in the emulation of spotlight effects.

¢

T

A

Fig. 11.5 - Light oriented by the local tangent space (left) and a global
coordinate system defined for all emissive points (right).

The following sections describe the types of emission distribution functions defined by MDL
and the way in which scene elements can distribute light in the Iray scene.

1.2 Emission distribution functions

The way in which light is distributed from an emissive surface is defined in the “Material
Definition Language” (page 97) (MDL) by an emission distribution function (EDF). An EDF is
specified as a field value in an MDL struct.

The material_surface struct defines light emission through its emission field:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 121

11 Sources of light 1.2 Emission distribution functions

Listing 11.1

struct material_surface {

bsdf scattering = bsdf();

Emission field of the
material_emission emission = material_emission(); material_surface
struct

s

The value of the emission field is an instance of the material_emission struct. This struct
defines the EDF to use for emission in its edf field:

Listing 11.2

struct material_emission {
edf emission = edf(); EDF field of the material_emission struct

color intensity = color(0.0);
intensity_mode mode = intensity_radiant_exitance;

s

The result of the EDF is also scaled by the intensity field of the material_emission struct,
depending upon the value of the mode field, an enum of type intensity_mode that determines
the measure used for the emission intensity:

Listing 11.3

enum intensity_mode {
intensity_radiant_exitance,
intensity_power

s

In general, an EDF complements the distribution function in a material_surface struct that

defines how light is reflected from and transmitted through a surface by its scattering field.
Taken together, reflected, transmitted, and emitted light account for all illumination perceived
on an object.

11.2.1 Types of emission distribution functions
MDL defines three types of emission distribution functions:

diffuse_edf

Light is emitted uniformly in all directions.

spot_edf
Light emission is restricted into a cone into which the hemispherical domain for the
distribution is rescaled. By default, the spot light axis is oriented along the surface
normal at the emission point. A parameter defines an exponent that modifies the cosine
of the angle between the axis and the sample point.

measured_edf

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 122

11 Sources of light 11.3 Light distribution from scene elements

The light distribution is defined by a light profile, a description of the light emittance for
real-world lights from a point light source in a particular direction. A light profile is the
primary parameter of the measured_edf. It can also be included in the scene as an
argument of an MDL function call (see IFunction_call) or as the default argument of
an MDL function definition (see IFunction_definition). The type of such an argument
is IType_light_profile.

The IES light profile [IES02] (page 208) is an industry-standard format for describing
real-world lights and is implemented in MDL. These light profiles are datasets supplied
by lamp vendors to describe their individual products.

11.3 Light distribution from scene elements

Iray provides the ILight element for the implementation of point, spot, directional and area
lighting. Iray extends the notion of the environmental contribution to lighting calculation
with an environment dome (page 127).

Iray also provides the ability to specify an emission distribution function in the material
attached to an object instance. In this way, any object can be a source of light emission, but
may also have reflective and transmissive properties as well.

The ILight: :set_type() and ILight: :get_type() methods of ILight use the Light_type
enum to define and acquire the type of light geometry.

Field in Light_type Meaning

LIGHT_POINT Emits in all directions from origin
LIGHT_INFINITE No origin, all light rays parallel

11.3.1 Point and spot lights

In Iray, point lights are positioned at the coordinate origin of the local light space. Spot lights
are not defined by an enum field value of Light_type, but by providing a light of type
LIGHT_POINT and using the spot_edf (page 124) distribution function. Spot lights point down
the negative z-axis, like the camera. This differs from some traditional scene description
formats, in which a light can have an origin, a direction, and area edge and axis vector.
Instead, Iray folds this information into the light instance transformation.

11.3.2 Directional lights

A directional light is a light at infinity that emits light in the direction of the negative z-axis. A
different emission direction can be set by attaching the ILight representing the directional
light to an instance node of type IInstance and setting its transformation matrix.

The LIGHT_INFINITE type defines a direction but does not have a position, as point and spot
lights do. The traditional use of a directional light is as an approximation of the rays of the
sun, which is at such a great distance to the earth that at human scale the light rays are
effectively parallel.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 123

11 Sources of light 11.3 Light distribution from scene elements

11.3.3 Area lights

Area lights specify a geometric shape that defines the source of light energy. Like directional
lights, area lights are oriented through the transformation matrix of the IInstance to which
they are attached.

The ILight: :set_area_shape() and ILight: :get_area_shape() methods of ILight use the
Light_area_shape enum to define and acquire the shape of an area light.

Field in Light_area_shape Meaning

AREA_NONE The ILight instance is not an area light
AREA_RECTANGLE Rectangular shape

AREA_DISC Disc shape

AREA_SPHERE Sphere shape

AREA_CYLINDER Cylinder shape

Note: A tranformation has only limited effect on some area light shapes: In particular, a
sphere shape will stay a sphere and not become an ellipse, a disc will stay a disc, and a
cylinder will stay a cylinder with a circular intersection.

11.3.4 Light-emitting objects

A material defined in the “Material Definition Language” (page 97) (MDL) specifies
distribution functions for light scattering and emission. In this way, any object in the scene
may be defined as a light source and the light it emits is evaluated in a physically based
manner in rendering. However, because the MDL material can also define scattering
properties, an object can both emit and reflect light. In this manner, illumination effects like a
dimly glowing glass sphere with reflections can also be implemented.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 124

12 Environment dome

NVIDIA Iray features a flexible environment dome as an extension over the conventional
infinite spherical environment. Depending on the selected mode, the dome can also be of
finite size, where camera movements inside the dome provide a different environment
lookup.

As an additional feature of the environment dome an implicit ground plane can be enabled,
which can also act as a shadow catcher. It is also able to provide other illumination effects,
such as reflections, of the objects in the scene.

12.1 Environment function

The MDL environment function is controlled with the following attribute on the IOptions
class:

mi: :IRef environment_function

The environment function used for the lookup of the conventional infinite spherical
environment, and also for the projections onto the different dome geometries. All MDL
functions are supported whose return type is either color or base::texture_return. In the
latter case, only the tint field is used and mono filed is ignored.

The following MDL functions are natively supported in the render modes and allow fast
updates on parameter changes:

° base::environment_spherical

° base: :sun_and_sky

° base: :perez_sun_and_sky

° nvidia::iray::hosek_wilkie_sky::sun_and_sky

Other environment functions require a pre-process that bakes the function into a texture.
For Iray Photoreal the baked texture drives environment light importance sampling and
the MDL environment function is executed at runtime, for Iray Interactive the baked
texture is used exclusively during rendering.

Simple transformations on the environment function can be applied using two further
attributes on the IOptions class without triggering texture baking:

mi::Float32 environment_function_intensity = 1
A linear scale that is applied to the intensity returned by the environment function.

mi::Color environment_function_tint = mi::Color(1)

A color tint that is applied to the intensity returned by the environment function.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 125

12 Environment dome 12.2 Environment dome options

mi::Float32_3_3 environment_function_orientation =
mi::Float32_3_3(1,0,0,0,1,0,0,0,1)
This matrix defines the transform from canonical directions (used for the environment
function evaluation) to world space. It can be used to freely rotate the environment. The
matrix needs to be orthonormal.

A number of options allow fine-tuning the baking of environment functions to a texture. As
before, these options are modeled as attributes on the I0ptions class.

mi::Sint32 environment_lighting_resolution = 2048

This option controls the number of pixels used for the resolution of the polar angle. The
azimuthal resolution is always twice the polar resolution. Higher resolutions result in
more detail in the baked environment representation. However, baking times are
increased accordingly. Note that for the Iray Photoreal render mode the resolution
merely determines the quality of environment light importance sampling while for the
Iray interactive render mode it directly determines the quality of the environment.

bool environment_lighting_blur = false

Applies a small Gaussian filter kernel to blur the baked environment representation. This
may increase the robustness of importance sampling in the Iray Photoreal render mode
and improve the visual quality of low resolution environments in the Iray Interactive
render mode.

bool iray_use_baked_environment = false

Forces the Iray Photoreal render mode to use the baked environment representation
exclusively for rendering (similar to the Iray Interactive render mode).

12.2 Environment dome options

The dome is controlled with the following attributes on the IOptions class, shown here with
their default settings:

const char* environment_dome_mode = "infinite"
The supported modes are:
"infinite”
Conventional infinite spherical environment lookup (default)

“ground”
Infinite spherical environment lookup, but with a textured ground plane,

"sphere”

Finite size sphere shaped dome

n boX n
Finite size box shaped dome

"sphere_with_ground”
Finite size sphere shaped dome where the lower part of the environment is projected
onto the plane dividing upper and lower parts of the sphere,

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 126

12 Environment dome 12.3 Implicit ground plane

"box_with_ground"

Finite size box shaped dome where the lower part of the environment is projected
onto the plane dividing upper and lower parts of the box.

For the finite size domes, the projection is computed by assuming a virtual camera position
that is defined by "environment_dome_ground_position" offset by
"environment_dome_ground_texturescale" times "environment_dome_rotation_axis".
So, as an example, if the real environment is an approximately box-shaped room and the
camera position to capture the environment map is known, then those values can be used
directly to set up a faithful representation of the environment. Note that for finite size domes
all scene geometry should be enclosed within the dome, since shading is not guaranteed to be
well-defined outside of it. When a camera ray misses a finite size dome it is shaded with the
backplate background color.

mi::Float32_3 environment_dome_position = mi::Float32_3(0,0,0)

The origin of the dome in case it is of finite size.

mi: :Float32 environment_dome_radius = 100

The dome radius for modes "sphere" and "sphere_with_ground".

mi: :Float32 environment_dome_width = 260

The dome width for modes "box" and "box_with_ground".

mi::Float32 environment_dome_height = 200
The dome height for modes "box" and "box_with_ground".

mi::Float32 environment_dome_depth = 260
The dome depth for modes "box" and "box_with_ground".

mi::Float32_3 environment_dome_rotation_axis = mi::Float32_3(0,1,0)
This axis defines the rotation axis for interactive rotations of the dome, without the need
for expensive rebaking of the environment. It also defines the up vector of the optional
ground plane and can thus be used to transform the dome for z-up scenes by setting to
(0,0,1). This does not affect the lookups into the environment map; the environment
lookup function has to be z-up as well in this case.

mi::Float32 environment_dome_rotation_angle = ©@

Angle of rotation for interactive rotations of the dome without the need for expensive
rebaking of the environment. The range of the rotation angle is [0,1].

bool environment_dome_visualize = false

Enables a false-color overlay of the finite size environment geometry. This can be used to
align the geometry with the projection of the captured environment map.

12.3 Implicit ground plane

An additional implicit “shadow catcher” ground plane can be specified. This plane weights
the environment contribution of the ground using a progressive estimation of the amount of
shadow on the ground plane, caused by the objects in the scene (from direct light only). The
mode of the environment lookup itself remains unchanged as it is specified by the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 127

12 Environment dome 12.3 Implicit ground plane

environment dome settings. The ground plane is a special case of the more general concept of
matte objects and matte lights (page 48).

The ground plane is controlled with the following attributes on the IOptions class, shown
here with their default settings:

bool environment_dome_ground = false

Controls whether the implicit ground plane is enabled or not.

mi::Float32_3 environment_dome_ground_position = mi::Float32_3(90,0,0)

The origin of the ground plane.

mi::Color environment_dome_ground_reflectivity = mi::Color(-1,-1,-1,1)
Controls the reflectivity of the ground plane at normal incidence (reflections are
Fresnel-weighted). A value of zero or less deactivates ground plane reflections for the

default setting of environment_dome_ground_reflectivity_grazing.

mi::Color environment_dome_ground_reflectivity_grazing =
mi::Color(-1,-1,-1,1)
Controls the reflectivity of the ground plane at grazing angles (reflections are
Fresnel-weighted). While a negative value is actually interpreted as white it does
deactivate ground reflections in case environment_dome_ground_reflectivity is zero.

mi::Float32 environment_dome_ground_glossiness = 100000.0

Controls the glossiness of the ground reflectivity. The glossiness can be mapped to the
roughness parameter of df : :simple_glossy_bsdf using

roughness = sqrt(2.0 / glossiness). Useful values range from 0 (diffuse) to
10000000.0 (perfect mirror).

mi::Float32 environment_dome_ground_shadow_intensity = 1.0
Controls the intensity of the shadow on the ground plane with a value greater or equal to
0.0. A value of 0.0 denotes no shadow at all and a value of 1.0 denotes regular shadow
intensity, thus values between 0.0 and 1.0 denote a lighter shadow. Values above 1.0
increase the shadow intensity. Note that the range of useful values above 1.0 is rather
limited and exceeding this range may lead to an unnatural dark shadow that can
influence other additive lighting effects, such as reflections of the objects in the scene.
The exact useful range is scene dependent.

mi::Float32 environment_dome_ground_texturescale = 0

Used to control the texture projection of the environment on the ground. This can be seen
as an equivalent to the distance from ground where the real life camera was placed to
take the captured environment map.

bool environment_dome_ground_visible_from_below = true

When set to false, one can see geometry located above the ground plane, even when the
camera is placed below it.

bool environment_dome_ground_connect_to_environment = false

Only effective if a backplate function or the backplate color is set. When set to true,
secondary interactions (like a reflection) with the ground plane will use the environment

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 128

12 Environment dome 12.3 Implicit ground plane

instead of the backplate/color. This is a special case of the general matte option. See
“Matte objects and matte lights” (page 48).

bool environment_dome_ground_connect_from_camera = false

This additional flag makes the ground plane behavior toggle between two different
lookup types. The first one is done locally (the flag is set to true), where similar
interactions with the ground plane (for example, the same point of intersection) will
deliver the exact same lookup into the real-world photograph. This usually works best
for a very elaborate matte object setup specifically arranged for only a single or very
similar camera position(s). The second type is global (flag is set to false), where the real
interactions with the environment or backplate are used instead, which is usually
preferable for simple ground plane setups (like using it only as a shadow catcher) or full
camera interaction. Note that setting the flag will only be noticable in scenes where no
backplate/color at all is specified (so all interactions will always be happening with the
environment), or if a backplate/color is specified and the
"environment_dome_ground_connect_to_environment" flag is set in addition. This is
a special case of the general matte option. See “Matte objects and matte lights” (page 48).

bool environment_dome_ground_legacy_reflection = true

When set to true, the ground will only reflect objects directly, but not when seen from
reflections on other objects. Also, reflections will not replace the (optional) ground
shadow, which allows to have highly glossy reflections mixed with diffuse shadowing.
For a more physically correct behavior, setting the option to false will avoid this, but one
has to take care to not mix strong ground shadows with a high ground glossiness (which
is equivalent to the behavior of regular matte objects).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 129

13 Camera

A camera includes physically-based properties such as the lens settings for a depth-of-field
effect, but also offers convenient built-in tonemappers and the selection of a virtual backplate
photograph. These are controlled with attributes of the ICamera class in the Iray API,
described in more detail in the following sections.

The following attribute on the ICamera class, shown here with its default settings where
applicable, controls the camera:

bool mip_use_camera_near_plane = false
Controls the camera’s near clip plane. When enabled the camera’s hither clipping
distance is used for clipping direct visibility. The near clip plane turns into a spherical
clip surface when a spherical and cylindrical camera distortion is used.

13.1 Tonemapping

The different render modes share built-in tonemappers, one of them being an extension to the
well known mia_exposure_photographic shader. These are used to map the unprocessed,
simulated high dynamic range results to values that current display technology is able to
work with and thus also offers optional display gamma correction. The tonemappers are
disabled by default, but it is recommended to use these built-in models for best rendering
performance and output quality.

The tonemapper is controlled with the following attribute on the ICamera class.

const char* tm_tonemapper

Defines the tonemapper to use. The attribute is not defined by default and thus no
tonemapper is enabled. The available built-in tonemappers are
mia_exposure_photographic or tm_custom_tonemapper.

bool tm_enable_tonemapper = true

Defines if the tonemapper should actually be used to tonemap the image. If disabled, it
will only steer the optional firefly filtering (see iray_firefly_filter and
iray_nominal_luminance)

13.1.1 Photographic tonemapper

After (optionally) applying vignetting, the mia_exposure_photographic tonemapper
comprises three stages: first linear exposure, then compression into displayable range, and
finally a set of post effects including gamma. It is controlled by the following attributes.

bool iray_internal_tonemapper = true

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 130

13 Camera 13.1 Tonemapping

Additional control if the internal tonemapper is enabled, assuming tm_tonemapper is set
to "mia_exposure_photographic". This is the case by default but it can be disabled if
there is a clash with a tonemapper plugin which shares the parameters.

mi::Float32 mip_vignetting = 0.0
In a real camera, the angle with which the light hits the film impacts the exposure,
causing the image to go darker around the edges. The vignetting parameter simulates
this. At 0.0 it is disabled, higher values cause stronger darkening around the edges. Note
that this effect is based on the cosine of the angle with which the light ray would hit the
film plane, and is hence affected by the field-of-view of the camera, and will not work at
all for orthographic renderings. A good default is 3.0, which is similar to what a compact
camera would generate.

13.1.1.1 Exposure control

mi::Float32 mip_cm2_factor = 1.0
In “Photographic mode” (nonzero film_iso) cm2_factor is the conversion factor
between pixel values and candela per square meter. This is discussed more in detail
below.

In “Arbitrary” mode, cm2_factor is simply the multiplier applied to scale rendered pixel
values to screen pixels. This is analogous to the gain parameter of
mia_exposure_simple.

mi::Color mip_whitepoint = mi::Color(1.04287, 0.983863, 1.03358, 1.0)

Whitepoint is a color that will be mapped to “white” on output. An incoming color of
this hue/saturation will be mapped to grayscale, but its intensity will remain unchanged.

mi::Float32 mip_film_iso = 100.0
The mip_film_iso should be the ISO number of the film, also known as “film speed”. As
mentioned above, if this is zero, the “Arbitrary” mode is enabled, and all color scaling is
then strictly defined by the value of cm2_factor.

mi::Float32 mip_camera_shutter = 0.125

The camera shutter time expressed as fractional seconds, for example, a value of 100
defines a camera shutter of 1/100. This value has no effect in “Arbitrary” mode.

mi::Float32 mip_f_number = 8.0
The fractional aperture number. For example, the number 11 defines aperture “f/11”.
Aperture numbers on cameras go in a standard series: f/1.4,f/2,{2.8,f/4,£/5.6, /8,
/11, f16, etc. Each of these are referred to as an f-stop or a stop. Each f-stop in the
sequence admits half the light of the previous f-stop. Note that this shader doesn’t count
“stops”, but actually wants the f-number for that stop. This value has no effect in
“Arbitrary” mode.

13.1.1.2 Compression

The compression stage defines the actual “tone mapping” process of the image, i.e. it defines
how the high dynamic range values are adapted to fit into the black-to-white range of current
display devices.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 131

13 Camera 13.1 Tonemapping

const char* mip_compression_variant = "reinhard"

Defines the curve driving the compression to displayable range. The default value
reinhard uses a Reinhard-style tonemapper driven by the parameter
mip_burn_highlights, a mode which is fully compatible with the
mia_exposure_photographic shader. Further options are uncharted2 and ue4_aces,
two filmic tone mapper curve variants, and pbr_neutral, the Khronos Group “PBR
Neutral” tone mapper, all of them parameterless. Finally, using raw_parameters offers
high flexibility and allows to directly set coefficients of a rational tonemapping function.

mi::Float32 mip_burn_highlights = 0.25
For the compression variant reinhard this parameter defines how much “over
exposure” is allowed. A value of 1 yields an identity mapping. As it is decreased
towards 0, high intensities will be more and more “compressed” to lower intensities.
When mip_burn_highlights is 0, the compression curve is asymptotic so that an infinite
input value maps to a white output value, making over-exposure no longer possible. A
good default value is 0.5.

mi::Float32_4 mip_compression_parameters@

mi::Float32_3 mip_compression_parameters]
For the compression variant raw_parameters these options set the parameters py, ..., Ps
of the tonemapping function f(x) = (x- (po-x+p1) + p2)/(x - (p3- x4+ pa) + ps) + pe.
Note that while this offers fine-grained control of the compression characteristics, care
should be taken to create meaningful compression curves to avoid rendering artifacts.

bool mip_burn_highlights_per_component = true
By default compression is applied separately to all channels, which can lead to saturation
loss though. Disabling the parameter applies compression to the luminance, preserving
the chromaticity of the output color. This option has no effect for the compression variant
pbr_neutral.

bool mip_burn_highlights_max_component = false
Enabling this parameter applies compression depending on the maximum value of the
different color components. Note that if enabled, this options overrides
mi_burn_highlights_per_component. This option has no effect for the compression
variant pbr_neutral.

bool mip_burn_highlights_blended_component = false
Enabling this parameter applies a linear blend between compression per color
component and based on maximum color component. In this mode, the saturation of the
highlights may be controlled using the option mip_burn_highlights_saturation. Note
that if enabled, this option overrides mip_burn_highlights_per_component and
mip-burn_highlights_max_component. This option has no effect for the compression
variant pbr_neutral.

mi::Float32 mip_burn_highlights_saturation = 6.0
This parameter drives the saturation of highlights if
mip_burn_highlights_blended_component is set. This option has no effect for the
compression variant pbr_neutral.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 132

13 Camera 13.1 Tonemapping

13.1.1.3 Post effects
The effects are applied in the order listed here.

mi::Float32 mip_saturation = 1.0

The saturation parameter allows an artistic control over the final image saturation. 1.0 is
the standard “unmodified” saturation, higher increases and lower decreases saturation.

mi::Float32 mip_crush_blacks = 0.2

When the upper part of the dynamic range becomes compressed it naturally loses some
of it’s former contrast, and one often desires to regain some “punch” in the image by
using the crush_blacks parameter. When 0, the lower intensity range is linear, but when
raised towards 1, a strong “toe” region is added to the transfer curve so that low
intensities get pushed more towards black, but in a gentle fashion.

mi::Float32 mip_gamma = 2.2
The gamma parameter applies a display gamma correction. If the image will be
displayed as-is, without further post-processing by the application, this value should be
set to match the displays characteristic, otherwise disabled by setting to 1.

Note: Note that the attributes have the prefix mip_, but apart from that their meaning is
identical to the parameters of the mia_exposure_photographic shader.

13.1.2 Custom tonemapper

This section describes parameters of the custom tonemapper.

struct Tm_custom_curve tm_custom_tonemapper

The structure of type Tm_custom_curve describes a mapping curve controlled by the
following members:

mi::Float32 exposure = 0.0

Color3 whitepoint = (0.0, 0.0, 0.0)

struct Tm_custom_curve_control_point[] red
struct Tm_custom_curve_control_point[] green
struct Tm_custom_curve_control_point[] blue
mi::Float32 gamma = 0.0

The components of the tonemapper are applied in the order of the struct members: first
exposure control and whitepoint correction are done, then a mapping of the individual
color channels, and finally a gamma correction to match the display (a good default is
usually 2.2).

The struct members red, green, and blue are dynamic arrays of structures of type
Tm_custom_curve_control_point. This structure has the following members:

mi::Float32 in

The input value that is mapped to the corresponding out value.

mi::Float32 out

The output value onto which in is mapped.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 133

13 Camera 13.3 Lens

The represented curve is a piecewise linear interpolation of the given control points. The
in and out arrays need to be monotonically increasing. Note that one should disable the
built-in gamma correction by setting it to 1, if the mapping curve already handles the
display correction.

13.2 Bloom filter

Iray includes a built-in filter to roughly approximate a bloom/glare effect. As the filter is
solely based on post-processing, it is mostly targeted at very subtle bloom and glare effects
like adding slight halos to emissive objects.

The following attributes on the I0Options class, shown here with their default settings, control
the integrated filter:

bool iray_bloom_filtering = false
Enable or disable the filter.

mi::Float32 iray_bloom_filtering_radius = 0.01

Sets the blur radius of the bloom filter, specified as fraction relative to the output
resolution.

mi::Float32 iray_bloom_filtering_threshold = 0.9
Specifies the threshold to cutoff bright spots in the image and blur these in a second step.

mi::Float32 iray_bloom_filtering_brightness_scale = 1.0

Scaling factor for the blurred bright spots when composited in the third step.

13.3 Lens

The camera holds lens settings to simulate depth-of-field and other camera effects. The
following attributes on the ICamera class control the behavior. Note that sizes etc. are
represented in scene units and thus must be adjusted according to the scene dimensions.

mi::Float32 mip_lens_radius = 0.0

Controls the radius of the lens.

mi::Float32 mip_lens_radial_bias = 0.5

Control to steer the sampling of the lens and the resulting bokeh effect. For values
greater than 0.5 the samples are biased towards the center of the lens, for values less than
0.5 towards the edge.

mi::Float32 mip_lens_focus = 2.0

Controls the focal distance to which the camera is adjusted.

mi::Float32 mip_lens_shift_x = 0.0

Controls the horizontal lens shift.

mi::Float32 mip_lens_shift_y = 0.0

Controls the vertical lens shift.

mi::Float32 mip_lens_stereo_offset = 0.0

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 134

13 Camera 13.3 Lens

Controls the distance between the center and the right camera position for stereo view.
Iray can render both the right and left stereo images in one pass. When the ICanvas
passed to the IRender_context: :render() function has multiple layers iray will render
the right and left eye in one pass and store these in respectively the first and second layer
of the canvas (See “Rendering and canvases” (page 30)).

const char* mip_lens_distortion_type = "none"

Controls the lens distortion model. The default is a conventional perspective camera. The
radial distortion models define the relationship between the undistorted radial pixel
coordinate r, and the distorted radial pixel coordinate r; with regards to the ideal
perspective camera.

The supported modes are:

"spherical”

Conventional spherical camera mapping.

"cylindrical”

Conventional cylindrical camera mapping.

n poly3 n
Perspective camera with third order radial distortion model:
rg=1,*(1-k +k; *r,?)

"inv_poly3"
Perspective camera with third order inverse radial distortion model:
1y =14 % (1-ki + kg *1,%)

n po 1y5 n
Perspective camera with fifth order radial distortion model:
rg=1,*(1+k *1,2 + ko *r,%)

"inv_poly5"
Perspective camera with fifth order inverse radial distortion model:
r=1%(1+k *r% + ko *15%)

"ptlens”
Perspective camera with fourth order radial distortion model:
I‘d=1‘u*(1-k1-k2-k3+k1 * Ty +k2*ru2+k3*ru3)

"inv_ptlens"
Perspective camera with fourth order inverse radial distortion model:
ry =I‘d*(l—k1-k2-k3+k1 >('I‘d+k2*1‘d2+1<3’('I'd3)

"brown”
Perspective camera with fifth order radial distortion model:
I‘d=1‘u*(k1 +ky*ry, +k3*ru2+k4*ru3+k5*ru4)

"inv_brown"

Perspective camera with fifth order inverse radial distortion model:
Ty =I‘d*(k1 +k2*rd+k3*rd2+k4*rd3+k5*rd4)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 135

13 Camera 13.3 Lens

"equidistant”

Simulates an equidistant fisheye with a fourth order radial distortion model:
ry =k1 +k2*rd+k3*rd2+k4*rd3+k5*rd4

The distortion formula is used to map the distance from the image center to the exit
angle. Thus, the polynomial determines the entire field of view instead of merely
encoding the deviation from the ideal model. Consequently, the camera’s focal
length and sensor width (ICamera: :get_aperture()) are ignored.

In order to obtain an ideal equidistant fisheye, all distortion parameters should be
set to 0, except for ky, which determines the field of view. Assuming a desired field
of view of 0, sensor aspect ratio 4, and mip_lens_distortion_scale s, k; should be
set as follows:

Lens type Field of view 0 ky
circular fisheye vertical af/s
cropped horizontal 0/s
full-frame fisheye diagonal iiH 0/s

The horizontal field of view for a physical fisheye lens which uses equidistant
projection is determined by 8 = w/ f, where w denotes the sensor width
(ICamera::get_aperture()) and f the focal length. Vertical and diagonal field of
view are computed accordingly.!

By default, all pixels of the image will be rendered. In order to simulate the limited
image circle of physical lenses, which yields the typical black envelope for circular
and cropped fisheye lenses, mip_lens_max_fov should be set to 6.

mi::Float32_3 mip_lens_distortion_params = mi::Float32_3(0,0,0)
Controls the parameters ki, k, and k3 in the radial distortion models.

mi::Float32_3 mip_lens_distortion_params2 = mi::Float32_3(9,0,0)

Controls the parameters k4 and ks in the radial distortion models. The third component
is ignored.

mi::Float32 mip_lens_distortion_scale = 1.0

Controls the relative scale of the lens distortion.

mi::Float32 mip_lens_max_fov = 2.0 * M_PI

Controls cutoff angle for rays in the "equidistant" fisheye camera model. Rays beyond
this field of view will not be rendered and yield black pixels.

This setting is used to achieve the common black envelope around images taken with
circular fisheye lenses.

An aperture function is used to lookup the lens aperture tint. The aperture function is
evaluated over a square lens with the radius specified by the mip_lens_radius option. The 2D

1. Note that this implies the following relationship, which explains why the sensor size does not affect depth of
field in this camera model. Keeping the polynomial (and thus the field of view) constant and scaling the sensor
width implies that the (implicit) focal length is scaled by the same factor. Absent any change to the lens radius,
this also implies that the f-stop is scaled accordingly.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 136

13 Camera 13.4 Virtual backplate

lens coordinates are passed to the function as the first texture space in the rendering state,
ranging from 0 to 1. All MDL functions are supported whose return type is either color or
base::texture_return. In the latter case, only the tint field is used and mono filed is ignored.

The aperture function is controlled with the following methods on the ICamera class:

mi::Sint32 ICamera::set_aperture_function(const char* name)

const char* ICamera::get_aperture_function()
Defines the texture through a texture lookup function represented as a DB element of
type IFunction_call. There is no aperture shader by default, in which case the aperture
is not tinted.

Alternatively, if no aperture function is set a simple approximation of typical camera aperture
blades can be used. This is controlled by two options:

mi::Sint32 mip_aperture_num_blades = @

For values greater than two this activates a blade-shaped aperture with the specified
number of blades.

mi::Float32 mip_aperture_blade_rotation_angle = 0.0

Rotation of the blade segments in radians.

13.4 Virtual backplate

A virtual backplate is specified by a texture and a background color. All primary camera rays
that would usually end up in the environment dome, perform a lookup in the backplate
instead.

All lighting effects (illumination, reflection, refraction, etc.) are in general not influenced by
the backplate. There is one exception though: perfectly specular, thin walled transmitting
materials can be used to make the backplate appear through windows. For example if both
the windshield and the back window of a car are modeled as thin walled glass, looking
through both yields a backplate lookup instead of the environment dome.

It is also possible to enable this effect for perfectly specular, non-thin walled materials. This is
achieved by setting the following attribute on the I0ptions class.

bool refract_backplate = false

Forces perfectly specular, non-thin walled materials to respect the virtual backplate. Note
that this can lead to visible discontinuities on complex geometric shapes due to the
mixture of both the backplate (texture and color) and environment dome contributions.

The backplate texture is scaled to exactly fit the rendering resolution so that rendering an
empty scene will display the texture at full scale. By setting its uv transform, the scale and
offset of the texture can be modified. In this case, the wrap mode parameters control the tiling
of the texture. In regions where the transformed texture does not cover the viewport,
including repetition controlled by the wrap mode, either the backplate background color is
displayed or the environment lookup is used if the wrap mode and clip parameters are set to
values that clip the texture.

By default, the backplate is not tonemapped, so that the backplate image in the final
tonemapped rendering looks exactly like the backplate provided as input. Optionally, the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 137

13 Camera 13.4 Virtual backplate

tonemapper used on the rendered image, see Section can also be enabled for the backplate.
These tonemappers can include a gamma correction, which is not seen as part of the
tonemapping itself, and is always applied to the backplate.

Note: The regular texture pipeline has support for inverse gamma correction, which can
compensate the gamma correction. If needed, the setting for the inverse gamma
correction can be explicitly controlled with the ITexture: :set_gamma() and related
methods.

The virtual backplate is controlled with the following methods on the ICamera class.

mi::Sint32 ICamera::set_backplate_function(const char* name)
const charx ICamera::get_backplate_function()

Defines the texture through a texture lookup function represented as a DB element of
type IFunction_call. State access in the texture function is limited to
state::texture_coordinate(0). There is no backplate by default, in which case the
environment dome lookup is used.

void set_backplate_background_color(const Color_struct &color)
Color_struct get_backplate_background_color()

Defines the background color if no backplate texture is specified, or fills the regions of the
viewport that a transformed texture would not cover if the parameters of a
base::file_texture backplate function indicate that the texture is clipped. The default is
mi::Color(-1,-1,-1,-1) which disables the usage of the background color. Note that
the alpha value is ignored and filled with 0 instead.

void set_backplate_tonemapping_enabled(bool flag)
bool get_backplate_tonemapping_enabled()

Tonemapping is disabled by default on the backplate. It can be controlled using these
methods. The gamma correction in the tonemapper is not controlled through this flag
and is always applied to the backplate as well.

void set_backplate_lens_effects_enabled(bool flag)
bool get_backplate_lens_effects_enabled()

Lens effects such as depth of field and distortion are disabled by default on the backplate.
It can be controlled using these methods. Note that lens effects can not be disabled for
backplate meshes.

The backplate can also be mapped onto a mesh with the following attributes on the
IAttribute_set class (for objects and instances in the scene graph), so that one get parallax
effects while navigating inside of a virtual 3D backplate.

bool backplate_mesh = false

If set to true the respective object or instance is marked as special backplate mesh. Note
that the mesh must have valid texture coordinates as otherwise the backplate image
cannot be mapped onto it. Also note that texture transformations are ignored for the
backplate mesh; backplate mesh texturing is entirely controlled by the mesh’s texture
coordinates.

mi: :IRef backplate_mesh_function

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 138

13 Camera 13.5 Motion blur

If set, the specified texture lookup function (of type IFunction_call) will be used
instead of the backplate function specified for the camera. This enables more flexible
texturing workflows in case of multiple backplate meshes.

13.5 Motion blur

Motion blur simulates a shutter effect of real cameras, and results in the blurred appearance
of moving objects and light sources. Also movement of the camera itself causes a blur of the
rendered scene. It is enabled if the shutter close time is strictly larger than the shutter open
time and if the progressive_samples_per_motion_sample attribute is set to a value larger
than one. The actual motion is set with motion transformations, see the SRT mode on the
IInstance class. The perceived blur thus depends on the shutter time of the camera and the
amount of motion that happens within this timeframe.

Motion blur is controlled with the following methods and attributes on the IOptions class,
shown here with their default settings:

void IOptions::set_shutter_open(mi::Float32 shutter_open)
void IOptions::set_shutter_close(mi::Float32 shutter_close)

Methods on the I0ptions class to control the shutter times. To enable motion blur, the
shutter close time must be strictly larger than the shutter open time. The normal range is
(0, 1), which uses the full length of the motion vectors or motion vector paths. It can be
useful to set both times to 0.5, which disables motion blur rendering but computes scene
data at an offset of one half of the frame, which allows bi-directional post-motion-blur in
the result image. The default is 0.0 for both values, disabling motion blur.

mi::Sint32 progressive_samples_per_motion_sample = 8

Number of sub-frames rendered before the scene is updated to a different time value. A
higher value optimizes render performance at the cost of a higher number of total frames
required before the separate motion step samples become invisible in the image. A lower
value increases interactivity, but reduces total render performance (for example,
rendering more frames will take longer). A high value makes noise vanish faster, but
motion converge slower — and vice versa. This relationship can be tweaked in one or the
other direction, depending on the lighting complexity and the amount of motion
specified for a scene. Only powers of 2 are valid. A value of 0 switches off motion blur.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 139

14 Physically plausible scene setup

A primary goal of Iray is to provide artists, designers, architects, and other design
professionals with the ability to easily create photorealistic imagery. No sophisticated
knowledge of the theory behind 3D rendering is required; Iray, and in particular its “Iray
Photoreal” (page 45) render mode, provides excellent results right out of the box.

However, as a physically-based renderer, Iray requires scenes to be set up in a physically
plausible manner. To set up a scene that will yield great photorealistic results with Iray, it is
sufficient to honor a few recommendations, which are provided in the following sections.

Furthermore, preparing physically plausible scenes also introduces performance benefits:
potential sources of noise and other unexpected situations are implicitly avoided when
geometries and materials are set up optimally.

14.1 Recommendations for geometry preparation

In the next sections you are going to get recommendations for your preparation of geometry
for rendering with Iray. Avoid common pitfalls such as glass objects with no thickness and
under-tessellating your geometry. Instead, stay faithful to reality: Use glass with real
thickness where appropriate, use fine tessellation and pay attention to the layout of your UV
coordinates for anisotropic reflections.

14.1.1 Modeling glass

In real life, glass objects always have a thickness. Even when really thin, their depth is often
not inconsiderable. In order to compute proper refractions, Iray expects light rays to travel
through solid geometry.

In some cases, the thickness really is negligible. Examples are far-away windows or soap
bubbles, cases where refraction effects are no longer visible. In such cases, modeling objects
without a thickness is fine, if the materials are set up accordingly. The thin-walled feature of
MDL is designed for just this purpose. Remember that refractions will be ignored with this
setting enabled.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 140

14 Physically plausible scene setup 14.1 Recommendations for geometry preparation

Fig. 14.1 - Thin-walled glass material

Iray Photoreal will be able to properly compute and render refractions when glass is modeled
as a solid geometry.

Fig. 14.2 - Glass material on a solid geometry

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 141

14 Physically plausible scene setup 141 Recommendations for geometry preparation

The following example illustrates how important it is to model glass geometries in the exact
same way as they appear in real life in order to get an accurate result with Iray Photoreal.

——

~

e
—
 —

Fig. 14.3 - Light bulb modeled with a single continuous line.

In Figure 14.3, once the Lathe modifier is applied, the result will be a solid geometry. When
rendered with a physical glass material, the bulb will look like its one solid piece of glass.

To model a realistic bulb, ensure that the hull is one thin layer of glass that always has a
thickness. Model a very thin external layer.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 142

14 Physically plausible scene setup 141 Recommendations for geometry preparation

Fig. 14.4 - Physically correct modeled lightbulb.

Note in Figure 14.4 the drastic difference between the solid lightbulb above and this version
which uses a modeled hull.

When rendered with a physical glass material, the result will now be photorealistic. Note the

strong refraction effects at the top of the bulb.

14.1.2 Modeling volumes

This section provides recommendations about modeling neighboring volumes and enclosed
volumes:

* Neighboring volumes (page 145)
* Enclosed volumes (page 147)

Note: When modeling volumes, be sure that they are solid and closed.

14.1.2.1 Neighboring volumes

When modeling neighboring volumes such as liquids in basins or different layers of liquids,
you can:

* Separate them with a thin layer of air, which will cause additional refraction effects as
shown in the following figure:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 143

14 Physically plausible scene setup 141 Recommendations for geometry preparation

Fig. 14.5 - Non-overlapping volumes

In Figure 14.5, the layer of air that separates them causes non-realistic refraction effects

¢ Slightly overlap them to avoid additional refraction effects as shown in the following
figure:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 144

14 Physically plausible scene setup 141 Recommendations for geometry preparation

Fig. 14.6 - Overlapping volumes, which shows the physically correct variant

A slight overlap is the recommended modeling technique for neighboring volumes.

14.1.2.2 Enclosed volumes

When modeling enclosed volumes, no special modeling guidelines need to be considered to
ensure correct rendering results. The following line drawing provides a simple example — a
glass of water with ice cubes that contain air bubbles:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 145

14 Physically plausible scene setup 14.1 Recommendations for geometry preparation

Fig. 14.7 - Ice cubes in the water render correctly with non-overlapping volumes

When modeling the air bubbles, the ice cubes and the water, it is not necessary that these
overlap as the air bubbles are enclosed by the ice cubes, which are again enclosed by the
water. The glass and the water are neighboring volumes however, so they should be modeled
with a slight overlap.

14.1.2.3 Defining priorities

While by default an enclosed volume takes precedence over the enclosing volume, for the
region of overlap this is actually not strictly defined. The underlying assumption is that the
overlap is reasonably small and Iray simply uses one of the two surfaces for media separation
and ignores the other.

In case the overlap is larger or in general more complex (e.g. a drinking glass with fine
geometric details), priorities can be specified to explicitly define the order. For example, an ice
cube floating on water should be assigned a higher priority than the water (such that it
realistically displaces the water below it). Similarly, the glass containing both the cubes and
water may be assigned a higher priority than the ice.

Volume stack priority is specified using an attribute on IAttribute_set:

mi::Sint8 volume_priority = ©
Determines which objects take precedence over others in the volume stack. The
scene-surrounding empty space implicitly uses the minimum priority -128.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 146

14 Physically plausible scene setup 14.1 Recommendations for geometry preparation

14.1.3 Mapping uv-coordinates

UVW-coordinates are used to define how a texture is mapped on to some geometry.
However, UVW-coordinates are also used when you have a surface with anisotropic
reflections. The layout of the UVW-coordinates defines the direction of the reflections on the
surface. Just imagine it as the brush direction in case of brushed metal. Ensure that the
UVW-coordinates are well placed for anisotropic reflections. The orientation of the mapping
effects the orientation of the anisotropic reflection.

Fig. 14.8 - Anisotropic material on an object with planar UVW-mapping.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 147

14 Physically plausible scene setup 14.1 Recommendations for geometry preparation

Fig. 14.9 - Anisotropic material on an object with spherical UVW-mapping.

14.1.4 Tessellating curved surfaces

To appear smooth when rendered, smooth curved surfaces must be tessellated with enough
detail. Especially in areas of high curvature shading artifacts may occur if the geometry is not
sufficiently tessellated. Shadow edges appear to be blocky; faces are shaded when they
shouldn’t be. This phenomenon is called shadow terminator artifact. If the silhouette looks
under-tessellated, it is likely that shadow terminator problems will occur as well. Increase the
tessellation of the geometry to avoid shadow terminator artifacts.

Optionally, the per-object attribute on the IAttribute_set class can be set to avoid most of
such visible artifacts:

bool shadow_terminator_offset = false

If set to true, the automatic handling of most common shadow terminator artifacts is
enabled. Note that the effect is very limited if the “Caustic sampler” (page 57) is also
enabled.

Note though that this automatic handling can create new kinds of problems: One example are
dark spots if geometry is close-by (like in concave corners) or artifacts on refractive objects.
Thus a sufficient tessellation is still recommended in all cases.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 148

14 Physically plausible scene setup 141 Recommendations for geometry preparation

Fig. 14.10 - Poorly tessellated geometry showing bad shadow artifacts at the edge of the nose.

Fig. 14.11 - Same object with finer tessellation.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 149

14 Physically plausible scene setup 14.2 Recommendations for lights

Fig. 14.12 - Poorly tessellated objects do not look good in general.

Fig. 14.13 - Same object with proper tessellation.

14.2 Recommendations for lights

Iray simulates light transport following the rules from physics. Therefore in Iray, all light
sources contribute to the direct and indirect illumination of all objects. It is not possible to

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 150

14 Physically plausible scene setup 14.2 Recommendations for lights

constrain the contribution of lights to specific objects because it distorts real-world behavior.
The next chapters give you some tips for working with photometric lights.

14.2.1 Using photometric lights

Because Iray uses physically-based algorithms, if you work with realistic photometric input
values in SI units, like luminous intensity values in candela, you will get realistic output
results in SI units. Using physical units makes tweaking light parameters also more intuitive.

Real-world lights don’t shine with the same brightness in all directions but brightness
changes in different directions. Such distributions are stored in light profile files. One
example are IES light profiles that store a 3d representation of the light intensity distribution.
You can load those light profiles within a photometric light in Iray to render with light
distributions from real-world lights. To obtain IES light profiles, visit the web page of the
light manufacturer. Most professional light manufacturers provide downloadable IES files for
their lights.

Lights using measured light profiles are a good way of achieving convincing lighting effects.
Note, however, that such measurements assume a point light shape, which tends to yield
unnaturally hard shadows. This can be ameliorated by using small area light shapes like disc
and rectangle. Note the global_distribution parameter when using area light shapes and
that the shape can actually support the emission characteristics, for example, a rectangle
cannot emit light in tangent directions.

Iray supports the following types of Emission Distribution Functions (EDFs):
* Light profile (df::measured_edf)
* Spotlight (df::spot_edf)
* Uniform diffuse (df::diffuse_edf)
and light shapes:
* Point
* Rectangle
* Disc
* Sphere
* Cylinder

In addition, any geometry in the scene can be turned into a light source using the emission
property of MDL materials.

14.2.2 Using environment and sunlight

Iray considers the environment for illumination contribution. Good HDR environments are
likely to contribute lighting information that results in very realistic final results.

When using environment lighting, it is important to consider these recommendations:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 151

14 Physically plausible scene setup 14.3 Recommendations for materials

* When using sunlight, you can use the MDL function base::sun_and_sky as environment
function. The correct settings to work with luminance values that are mostly consistent
with those of real world sun and sky light on a clear day are:

rgb_unit_conversion: color(1.0, 1.0, 1.8)
sun_disk_intensity: 1.0

multiplier: ©6.10132

physically_scaled_sun: true // default value

* Avoid HDR images where the sun is not as bright as in real life. Otherwise the resulting
image looks washed out. To determine whether the sun is bright enough, open the HDR
with an image tool and take a look at the value of the sun. A sun of realistic size should
be a few thousand times brighter than other parts of the image. If its intensity value is
anywhere below 1000 then the sun is too dark, and the resulting light simulation will
look dull and lack the necessary contrast in the rendered image.

* Avoid low resolution HDRs, as the aliasing of small bright spots in the environment map
will appear in the final picture and yield artifacts, especially in the shading/lighting of
objects. Apply the optional blur settings to low resolution HDR images.

T T Fr. T.T - - =

Fig. 14.14 - HDR with dull sun compared with compared with HDR with bright sun

14.3 Recommendations for materials

The following tips can help you to provide physically plausible material settings for Iray and
benefit from photorealistic results with less noise and faster rendering times.

* Don’t use pure white colors. Pure white materials are rarely found in nature. They
should be avoided. Avoid diffuse color values such as RGB=[1,1,1] (pure white), which
could, for example, be replaced with [0.7, 0.7, 0.7] for white paper. Only few materials,
such as pure snow, can reach values as high as 0.9.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 152

14 Physically plausible scene setup 14.3 Recommendations for materials

Fig. 14.15 - Pure white (left) compared with physically realistic white (right)

* Don’t use pure black colors: Purely black surfaces are rarely found in nature. They
should be avoided as such. An RGB value like [0,0,0] could for example be replaced with
the value [0.04, 0.04, 0.04] for charcoal or fresh asphalt.

Fig. 14.16 - Pure black (left) compared with physically realistic black (right)

* Avoid perfectly reflective materials when possible. In nature, a reflectivity ratio of 0.7 is
already considered high. Set reflectivity to [0.7, 0.7, 0.7] instead of pure white. Freshly

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 153

14 Physically plausible scene setup 14.3 Recommendations for materials

polished silver or chrome can reach reflectivities above 0.9, but oxidation and dust
reduces this already.

Fig. 14.17 - Perfect reflectivity (left) compared with realistic reflectivity (right)

* Decide if emitting objects have to also reflect light. In most cases, this will not be
necessary and materials without any BSDFs are cheaper to compute. If you do need a
full material, test its setting first before adding emission. Otherwise, the brightness of the
emission will make it hard to spot problems with the material setup.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 154

14 Physically plausible scene setup 14.3 Recommendations for materials

Fig. 14.18 - Improperly set up glowing material (left) compared to properly set up glowing
material (right)

* Alpha maps embedded in textures are not used to automatically create holes. Use the
cutout opacity feature of the MDL materials to create holes in objects.

Fig. 14.19 - Cutout opacity feature

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 155

14 Physically plausible scene setup 14.4 Recommendations for cameras

14.4 Recommendations for cameras

14.4.1 Depth of field

To increase photorealism, you can set the camera’s depth of field (page 132). Using depth of
tield does not add to the computational cost of rendering a scene.

Figure 14.20 is a scene rendered without depth of field calculations.

Fig. 14.20 - Without depth of field

Figure 14.21 shows the addition of depth of field.

Fig. 14.21 - With depth of field

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 156

15 Networking

The following sections provide an overview about the networking support provided by Iray,
supported networking modes, and Iray Bridge which allows simple and efficient use of
resources of a remote cluster.

15.1 Networking overview

neuray is a distributed system supporting different networking modes, for example, UDP
multicast and TCP unicast with or without automatic host discovery. Such a cluster of
connected hosts uses a distributed database with redundancy to distribute data and jobs, for
example, scene data and rendering requests. The configuration of the networking facilities is
flexible and left to the user to support different use cases, for example, a master/slave setup,
or a setup of equal peers sharing resources.

neuray provides a built-in HTTP server framework that can be used to implement a HTTP
server that executes C++ code in reaction to HTTP requests (including serving of static files).
This HTTP server can for example be used by an integration to provide remote viewing
capabilities. neuray also provides a built-in RTMP server framework to provide RTMP
streams of rendered images.

For network rendering in local clusters it is required that all files are available on all involved
hosts. The absolute filenames do not necessarily need to be identical on all hosts, but the
relative filenames based on the configured search paths need to be identical on all hosts.

15.2 Networking modes

This section introduces:

1. The different networking modes:
* No networking (page 160)
* UDP mode (page 160)
* TCP mode (page 160)
* TCP mode with discovery (page 160)

2. The program example_networking.cpp (page 257), which shows the basic configuration
options to set up the different networking modes. Further configuration options related
to networking are provided by the INetwork_configuration interface. A simple
implementation of the ITHost_callback interface is used to track network changes.

See “Networking configuration” (page 27) for a general discussion about the advantages and
disadvantages of the available networking modes.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 157

15 Networking 15.3 Iray Bridge

15.2.1 No networking

This mode is the default, since it does not require any additional configuration. In this mode
each instance of the Iray API is separate. There are no attempts to connect to other instances.
This mode was already used in the previous examples. It is part of this example program just
for a matter of completeness.

15.2.2 UDP mode

The UDP mode is the simplest networking mode (apart from no networking at all). All it
requires is a UDP multicast address and port number. All hosts with instances of the Iray API
than can be reached via this multicast address join a single cluster. The cluster can be
restricted to certain sets of hosts by using an optional discovery identifier. This option allows
a fine-grained control over potential members of a particular cluster.

15.2.3 TCP mode

In TCP mode it is necessary to specify all hosts participating in the cluster in advance. Apart
from your address and port, you have to specify the addresses and ports of all other hosts.
Since this mode is not very flexible it is recommended to use TCP mode with discovery
instead.

15.2.4 TCP mode with discovery

This mode is similar to TCP, but there is a discovery mechanism which eliminates the need to
specify the addresses and ports of all other hosts. There are two variants of this mode:
discovery via multicast or discovery via a master node. In the multicast variant you have to
specify a common multicast address which is used by all hosts during the discovery phase to
join the cluster. In the master variant you have to specify a common unicast address. The host
with the given IP address acts as master during the discovery phase, all other hosts connect to
this host to join the cluster. In both variants TCP is used as in the TCP mode without
discovery after the host connected to the cluster. Similar to the UDP mode an optional
discovery identifier can be used to restrict the cluster to a certain set of hosts.

15.2.5 Example - Starting the API in networking mode

Source code
example_networking.cpp (page 257)

This example demonstrates the usage of various networking modes by specifying the values
of its command-line arguments.

15.3 lIray Bridge

Iray Bridge is a feature shipped with Iray that allows efficient use of the resources of a remote
cluster to render a local scene over a relatively high-latency low-bandwidth connection such
as the Internet. Iray Bridge is designed to be integrated with a minimal effort and to be easy
to use.

Iray Bridge comes in the form of two plugins, one client-side plugin and one server-side
plugin. The client-side plugin makes new Iray Bridge render modes available that can be

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 158

15 Networking 15.3 Iray Bridge

used to render using a remote cluster the same way as when rendering locally. Swapping
between local render modes and Bridge render modes can be done at any time. The
server-side plugin makes available the server-side Iray Bridge application that provides the
server-side features needed by the Iray Bridge render contexts.

The data required on the remote host will be sent automatically by Iray Bridge as part of
rendering a frame and features such as server-side caching of data and sending only what has
changed since the last render minimize the data that needs to be sent. Iray Bridge supports
streaming and low-latency hardware H.264 encoding and decoding to ensure high
interactivity, as well as lossless video formats to deliver uncompressed frames for final
renderings.

Iray Bridge also provides a scene snapshot feature that very efficiently saves the current state
of the scene in a snapshot on the server that can later be imported off-line to perform things
like batch renderings.

15.3.1 Network architecture

Iray Bridge is designed to use a client-server architecture. On the client side is an application
with Iray integrated, for instance a CAD tool. The client can render locally as normal but can
at any time switch to an Iray Bridge render context, which will automatically connect to the
configured Iray Bridge server and use the resources of the server to render the scene. Any
required data upload and download of rendered images will automatically be taken care of
by Iray Bridge.

The server runs the Iray Bridge application and can be a single host or part of a cluster. Use
cases range from connecting to the work station at the office when working remotely, a
company owned cluster in a remote location, or to a virtual cluster rented by the hour. The
Iray Bridge client only connects to a single server that needs to run the Iray Bridge
application. The client will automatically get all the resources of any cluster that the Iray
Bridge server is a part of. Note that the other hosts form an Iray cluster with the Iray Bridge
server and these hosts doesn’t need to run the Iray Bridge application. Also note that the Iray
Bridge client doesn’t form a cluster with the remote server, and also that the Iray Bridge client
never participates in rendering when an Iray Bridge render mode is used.

The Iray Bridge client and Iray Bridge server use standard web sockets to communicate
which gives the same performance as plain TCP but is accepted by many firewalls, making
connections through corporate networks easier. The Iray Bridge application running on the
server will listen on a web socket URL such as
ws://some.host.com/my_bridge_application where some.host.com is the host name of
the server and my_bridge_application is the name of the Iray Bridge application running
on the server.

The Iray Bridge server can service multiple clients at the same time. The performance
considerations are the same as starting multiple renderings on a local Iray host without using
Iray Bridge.

15.3.2 Client integration

The Iray Bridge client-side features are made available by loading the plugin
iray_bridge_client.dll/so. This plugin will make the Iray Bridge render modes available and

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 159

15 Networking 15.3 Iray Bridge

install the API component: mi: :bridge::IIray_bridge_client The only configuration
needed is the web socket URL to the Iray Bridge application and, optionally, a security token
if the Iray Bridge application on the server is set up to require that. In that case, the server
application will inspect the security token and can reject the connection if it was not correct.

The application address is set by looking up the API component
mi::bridge::IIray_bridge_client and calling:
mi::bridge::IIray_bridge_client::set_application_url(const char* url) The URL is a
web socket URL and both plain and secure web sockets are supported, for example

ws:/ /some.host/some_app or wss:/ /some_host/some_app.

The optional security token is set by calling:
mi::bridge::IIray_bridge_client::set_security_token(const char* token) These two
methods set the default values that will be used by all the Iray Bridge render contexts when a
connection to the Iray Bridge server needs to be established. The values can be changed at
any time which will cause any active Iray Bridge render contexts to reconnect using the new
values on the next rendered frame. It is also possible to override the Bridge application
address and security token per Iray Bridge render context by setting the render context
options bridge_address and bridge_security_token.

The Iray Bridge API component also allows creation of a snapshot context which works
analogous to render contexts but can be used to save a very efficient snapshot of a scene on
the server. The snapshot can later be imported off-line on the server, just like a regular scene,
to provide features like batch rendering. The snapshot contexts also use the default Iray
Bridge application address and security token configured on the
mi::bridge::IIray_bridge_client API component and can also be overridden per
snapshot context by setting the options bridge_address and bridge_security_token.

Iray Bridge can use hardware decoded H.264 for streaming images from the server. This
feature is provided by loading the nvcuvid_video_decoder.dll/so plugin on the client. This
plugin provides hardware H.264 decoding on NVIDIA GPUs that supports this. Note that the
maximum resolution that is supported varies depending on the capabilities of the GPU. A
software H.264 decoder fall-back can be provided by loading the
ffmpeg_video_decoder.dll/so. The software decoder will automatically be used if the
NVIDIA hardware decoder fails, for instance because no suitable NVIDIA GPU is installed,
or because the resolution is too high.

Alternatively, Iray Bridge can also use any image format supported by Iray for streaming
images from the server. Loading the OpenlmagelO plugin provides a large number of image
formats that suits different needs and have different size/quality trade-offs such as jpg, png,
or exr. Loading other image plugins will automatically make the format available for use by
Iray Bridge.

15.3.3 Server integration

The server side Iray Bridge features needed to back up the Iray Bridge render and snapshot
contexts are made available by loading the plugin iray_bridge_server.dll/so. This plugin
installs the API component: mi: :bridge::IIray_bridge_server This API component can
be used to create an instance of the Iray Bridge Application by calling:
mi::bridge::IIray_bridge_server::create_application(const char* application_path,

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 160

15 Networking 15.3 Iray Bridge

http::IServer* http_server) Iray Bridge uses web sockets to communicate between client and
server, so before creating an application an HTTP server must be created and set up to listen
to some interface and port. The create_application() method then creates an Iray Bridge
application listening for clients on the provided path on the provided HTTP server. So if the
HTTP server is set up to listen for HTTP requests on the standard port 80 on host
some.host.com and the application is created with the path some_app, then the client would
connect to it using the web socket URL ws://some.host.com/some_app.

Before the application can accept sessions it must be configured and opened for connections.
The only mandatory configuration is the path to the disk cache which is set by calling:
mi::bridge::IIray_bridge_application::set_disk_cache(const char* location) The
disk cache is where data is cached to avoid having to upload the same data more than once. It
is a persistent storage and is either a local path or a cache server. Prefixes are used to
distinguish the two cases: “path:” for local path and “address:” to indicate an TCP/IP address
to a cache server. Examples: path:c:\temp\disk_cache or address:127.0.0.1:7777.

If snapshots will be saved then a path where they are saved needs to be specified by calling:
mi::bridge::IIray_bridge_application::set_snapshot_path(const char path) Itis also
possible to register a session handler by calling:
mi::bridge::IIray_bridge_application::set_session_handler(
[Application_session_handler* handler) This optional handler will be called during the client
handshake and can be used to inspect the security token provided by connecting clients and
reject connections based on the token, or other things like restricting the number of
concurrent sessions.

When configuration is finished, open the application for client sessions by calling:
mi::bridge::IIray_bridge_application::open() The Iray Bridge application is now
ready to accept client sessions and render on behalf of Iray Bridge render contexts.

Iray Bridge supports hardware H.264 encoding. This is enabled by loading the plugin
nvenc_video.dll/so on the server. Note that a Maxwell or newer NVIDIA GPU is required for
hardware video encoding to work. Iray Bridge also supports software H.264 encoding by
loading the plugin x264_video.dll/so. If both plugins are loaded then hardware H.264
encoding will be used if there is a GPU on the server that supports it, otherwise software
encoding will be used.

Note: These plugins are not shipped with Iray because of H.264 licensing
considerations. For more information, contact NVIDIA ARC.

Iray Bridge also supports encoding using any image format supported by Iray. Loading the
OpenlmagelO plugin provides a large number of image formats that suit different needs and
have different size/quality trade-offs such as jpg, png, or exr. Loading other image plugins
will automatically make the format available for use by Iray Bridge.

15.3.4 Render modes

Loading the iray_bridge_client plugin makes three new Iray Bridge render modes
available:

¢ iray_cloud (Photoreal Cloud)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 161

15 Networking 15.3 Iray Bridge

¢ irt_cloud (Interactive Cloud)
* nitro_cloud (IQ Cloud)

These render modes can essentially be seen as proxies for server side counterparts of these
render modes:

¢ iray (Photoreal)
¢ irt (Interactive)
* nitro (IQ)

Simply render with any of the Iray Bridge render contexts to automatically connect to the
configured server, upload any data not already on the server, and use its resources for
rendering.

Note: Iray Bridge render modes have their own set of options and, generally, do not
support the same options as their local counterparts. See “Render context options”
(page 167) for a list of supported options.

15.3.5 Upload progress

The Iray Bridge render contexts automatically upload scene data as needed. Sometimes,
especially when rendering the first frame of a new scene, this will upload a considerable
amount of data which can take a long time. Provided a IProgress_callback instance was
passed to the render call, the Iray Bridge render contexts will issue progress callbacks while
rendering to indicate that an upload is taking place and report the current progress of the
upload.

The following progress areas will be issued:

bridge_upload_state
@ — Detecting scene changes. Not yet known how many scene elements need updating.
1 — Calculating hashes. Calculating hashes for the data that needs updating.

2 — Querying server side cache status. Not yet known how much data needs to be
uploaded to the server.

3 — Uploading. It is now known how much data needs to be uploaded.
4 — Pending. Waiting for server to finish processing the uploaded elements.

5 — Done. Upload is done.

bridge_total_bytes_to_upload
Total number of uncompressed bytes to upload. In state 8 to 2 the number indicates the
amount of data for the cache misses reported by the server so far.

bridge_bytes_uploaded
Total number of uncompressed bytes uploaded so far for this upload.

bridge_updated_elements
The number of scene elements that are being updated. In state @ the number indicates the
number of changed elements detected so far.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 162

15 Networking 15.3 Iray Bridge

bridge_pending_hash_calculations
The number of pending hash calculations that needs to be done.

bridge_pending_cache_status

The number of cache status requests sent to the server for which no answer has arrived
yet.

bridge_pending_data_serialization
The number of cache misses that still require the data to be serialized before it can be sent.

bridge_uploaded_element
The name and size in bytes of the currently uploaded element.

bridge_uploaded_element_bytes
The number of bytes uploaded for the currently uploaded element

The most important area is the "bridge_upload_state" which will be fired as soon as
rendering is stalled because of an upload. Iray Bridge will start by detecting what changes
need to be uploaded since the last render. As soon as it has detected changes, it will start
querying the server for cache status. If the server reports cache misses, then the client will
start uploading the data. All this happens in parallel and the different states indicate when
the client is done with a certain task, at which point some values will be final.

* In state @ changes are being detected, so it is not known yet how many elements or how
much data will be uploaded.

¢ In state 1 it is known how many elements needs to be updated and hashes for those
elements are being calculated. The hashes are needed to be able to query the server for
cache misses.

* In state 2 hashes for all updated elements have been calculated, but the server has not
yet responded to cache status for all elements so the total amount of data to upload is not
yet known.

* In state 3 it is known what needs to be uploaded.

* In state 4 the upload is done but the client is waiting for a confirmation that all changes
have been persisted in the server side database.

* In state 5 the upload is completely done.

The rest of the areas give detailed information about the upload progress and give the values
known so far or the final value depending on the upload state. The states are entered strictly
in order 0-4, but states may be skipped if they are already done or if there was nothing to do
in the state.

15.3.6 Video modes

Iray Bridge is designed to work over relatively high-latency, low-bandwidth connections like
the Internet. Because of this, there are different trade-offs that have to be made, depending on
the use case. They cause Iray Bridge render modes to behave a little bit different than the local
render modes.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 163

15 Networking 15.3 Iray Bridge

There are two basic use cases that Iray Bridge supports: interactive and final rendering, and
three render modes to back them up: "interactive", "synchronous"”, and "batch", which
are controlled by setting the Iray Bridge video context option "scheduler_mode".

15.3.6.1 Interactive Scheduler Modes

The "interactive" and "synchronous" scheduler modes are designed for the interactive
use case and support low-latency hardware H.264 encoding and decoding to make the most
of the available bandwidth. These two render modes operate using a server-side render loop
which is updated with client-side changes when calling render on the Iray Bridge render
context. The server-side render loop will keep rendering in the background and picks up
changes from the client, renders, and streams back images with the changes or with more
iterations back to the client on a video stream.

The "synchronous" scheduler mode works exactly like local rendering in that calling render
with a transaction will return a canvas containing a rendering of the scene in the state of that
transaction. This is required when for instance blending the result with other render contexts
or if the resulting rendered frame must contain the changes in the passed in transaction for
some other reason. While sometimes required, this comes at a potentially big loss of
performance, especially for high latency connections. The reason for this is that the frame rate
is not only dependent on how fast the server can render a frame, but also on the round trip
time to the server, the time it takes to encode and decode the frame, and the time it takes to
send the frame over the network. For a connection to a server with a round trip of 108 ms the
frame rate is capped at 18 fps, even without considering any other cost.

The "interactive" scheduler mode is designed to overcome this limitation by allowing the
returned canvas to lag a little bit behind. Each call to the render method of the Iray Bridge
render context will send any scene changes to the server, but instead of waiting for a frame
that contains those changes the most recent frame from the server will be returned
immediately. The server-side render loop constantly renders and streams frames to the client
and will eventually pick up the changes. The client application needs to keep calling the
render method of the Iray Bridge render context to keep streaming changes to the server and
to display the most recent frame from the server. This works very well for interactive use
cases and, together will hardware H.264 encoding and decoding, can achieve frame rates very
close to the actual frame rate on the server if network conditions are good enough. The
"interactive" scheduler mode is not sensitive to network lag, but the bandwidth must be
high enough to support the bit-rate of the video stream. Another factor that can cause
performance problems is if the network tends to buffer data and deliver it in bursts.

The "interactive" and "synchronous" scheduler modes also support other video formats
such as jpg, as well as lossless formats like png and exr, but these image formats are very
expensive to encode and decode and also use a lot more bandwidth than H.264, so for the
best interactive experience, H.264 is recommended. It is possible to switch at any time
between the supported scheduler modes so interactive can be used until a frame is needed
that is guaranteed to be up-to-date at which point "synchronous"” can be used for that frame,
and then switch back to "interactive".

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 164

15 Networking 15.3 Iray Bridge

Note: In both these modes, the server will keep rendering iterations in the background,
also when video frames are sent over the network, so convergence time is not affected
by the video frame rate.

The interactive scheduler modes send frames over a video stream that only encodes a single
canvas at a time making it impractical to separate out different aspects of the light in the same
rendering as can be done using path expressions (LPEs). Simultaneous rendering of multiple
canvases is, however, supported by the "batch" scheduler mode.

15.3.6.2 Batch Scheduler Mode

The "batch" scheduler mode is intended to be used for final renderings with no or infrequent
updates on the client before the final image is ready. This mode always uses a lossless video
format for transmission of rendered frames. In contrast to the interactive scheduler modes,
the batch mode does not use Iray Bridge video streaming and does support multiple canvases
rendered in one pass. This mode is therefore ideal for use together with light path expressions
(LPEs).

15.3.7 Render context options

There are a number of render context options that are available for all Iray Bridge render
contexts. These render context options control various aspects of the video streaming and
which server to connect to.

There are also some options that are only available to specific Iray Bridge render contexts.

Options are set by calling set_option() on one of the Iray Bridge render contexts and
passing the name of the context as a string and an mi : : IData instance of the correct type as a
value.

15.3.7.1 Server configuration options

mi::IString bridge_address =
The address of the Iray Bridge application to connect to. Empty by default. If set this
value will override the value configured by using the
mi::bridge::IIray_bridge_client API component.

mi::IString bridge_security_token =
The security token to use when connecting to the Iray Bridge application. Empty by
default. If set this value will override the value configured by using the
mi::bridge::IIray_bridge_client API component.

15.3.7.2 Video streaming options

The video streaming options control various aspects of how video frames are transmitted
from the server to the client. The default values are tuned to give good interactive
performance with decent quality over a fairly modest Internet connection, but may need to be
tuned to give better performance, or quality, or both, depending on the network performance
and use case.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 165

15 Networking 15.3 Iray Bridge

mi::IDynamic_array video_formats_interactive = ["h264"

The video stream formats to use per canvas of the render target used when rendering
with scheduler mode set to "interactive" or "synchronous". Each entry in the
dynamic array must be of type mi: :IString and specifies the format to use for all layers
of the canvas with the same index in the render target. Default is an array with the single
entry "h264", but this can be set to any image format supported by Iray, like jpg, png,
exr, and so on. If video_formats_interactive lacks an entry for a canvas a default will be
used depending on the pixel type of the canvas.

Note:

* The different image formats will affect the precision (floating point to 8-bit
truncation, loss of alpha channel, and so on) of the resulting canvas on the client
side and the lossy formats will also degrade quality. Most formats are very
expensive to encode and decode and will use considerably more bandwidth
than H.264.

* Iray Bridge also supports the format "lossless" which performs a lossless
compression of the original canvas without loosing any information.

This option is ignored if scheduler_mode is set to "batch".

mi::IDynamic_array video_formats_batch = [

The video stream formats to use per canvas of the render target used when rendering
with scheduler mode set to "batch". Each entry in the dynamic array must be of type
mi: :IString and specifies the format to use for all layers of the canvas with the same
index in the render target. Default is an empty array, but this can be set to any image
format supported by Iray, like jpg, png, exr, and so on. If video_formats_batch lacks an
entry for a canvas a default will be used depending on the pixel type of the canvas.

Note:

* The different image formats will affect the precision (floating point to 8-bit
truncation, loss of alpha channel, and so on) of the resulting canvas on the client
side and the lossy formats will also degrade quality. Most formats are very
expensive to encode and decode and will use considerably more bandwidth
than H.264.

* Iray Bridge also supports the format "lossless" which performs a lossless
compression of the original canvas without loosing any information.

This option is ignored if scheduler_mode is set to "interactive" or "synchronous".

mi::IString video_format = "h264"
This is a convenience option that is equivalent to setting the option
video_formats_interactive with an array with a single entry with the value of this option.
Getting this option will return the value of index 0 of the video_formats_interactive
option.
This option is ignored if scheduler_mode is set to "batch".

mi: :IUint32 video_framerate = 30

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 166

15 Networking 15.3 Iray Bridge

Sets the maximum video frame rate. The server will not send out frames faster than the
specified setting, but will allow the frame rate to drop if the server-side render loop is
slower than the set frame rate. If H.264 is used as a video format, this setting will be used
together with the bit rate to calculate the budget for video frames. Bridge will however
automatically make use of the set bit rate by improving video quality if the actual frame
rate is lower than the set maximum frame rate. This automatic adaption is true only
when video format is set to "h264".

This setting has no effect if video mode is set to "batch".

mi::IUint32 video_min_bitrate = 1000000

This is the minimum bit rate Bridge will use when encoding the video stream.

Bridge will automatically adjust the actual bit rate for the video stream depending on the
estimated available bandwidth of the connection, but only within the span of the
configured minimum and maximum bit rate. Setting the minimum and maximum bit
rate to the same value will force Bridge to use that bit rate regardless of the available
bandwidth. If less bandwidth is available than the minimum bit rate setting then Bridge
will automatically lower the frame rate to compensate. Bridge will never use more than
the maximum bit rate setting, even if this is lower than the configured minimum bit rate.

Only used if the video format is set to "h264", in which case, the H.264 encoder will be
configured to use at least this bit rate.

mi::IUint32 video_max_bitrate = 150000000

This is the maximum bit rate Bridge will use when encoding the video stream.

Bridge will automatically adjust the actual bit rate for the video stream depending on the
estimated available bandwidth of the connection, but only within the span of the
configured minimum and maximum bit rate. Setting the minimum and maximum bit
rate to the same value will force Bridge to use that bit rate regardless of the available
bandwidth. If less bandwidth is available than the minimum bit rate setting then Bridge
will automatically lower the frame rate to compensate. Bridge will never use more than
the maximum bit rate setting, even if this is lower than the configured minimum bit rate.

Only used if the video format is set to "h264", in which case, the H.264 encoder will be
configured to use at most this bit rate.

mi::IString video_tag =
Use this tag with interactive scheduler mode when the client changes something in the
scene and wants to know, without switching to synchronous mode, when a frame arrives
with this change.

If the tag is set, then all subsequent calls to render() send this tag to the server, together
with any client-side changes. Just before the render() call returns, a progress callback is
fired with the area video_tag. The string value is the user-set tag that represents the
changes the frame contains. If the tag is empty, then no progress callback is made.

Note: If the application sets the video tag to "1", "2", "3" without waiting for frames
with previous tags, then tags might be skipped. In this example, only tag "3" might
be returned. Tags will, however, always arrive in order.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 167

15 Networking 15.3 Iray Bridge

mi::ISint32 nvcuvid_device = -1

The index of the device to use on the client for hardware H.264 decoding. If set to -1 (the
default), a suitable device will be selected automatically.

Note:

* Only NVIDIA GPUs that support hardware H.264 decoding can be used. The
resolution limit depends on the GPU. Higher resolutions than the card supports
will cause decoding to fail.

* The GPU must not be in TCC (Tesla Compute Cluster) driver mode. H.264
hardware decoding does not work in this mode.

mi::IFloat32 idle_timeout = 1.0

The time in seconds for which the server side render loop will keep rendering in the
background without any render requests coming from the client. Defaults to 1 second.

mi::IString scheduler_mode = "interactive"

The scheduler mode controls if rendering is optimized for interactivity or for final
renderings. Can be set to "interactive", "synchronous" or "batch". Should be set to
"interactive" for interactive use cases and "batch" for final renderings. The
"synchronous" mode can be used for interactive use cases where it is important that the
rendered canvas match the render transaction, but at a usually very large performance
penalty. The interactive scheduler mode is optimized for maximum interactivity and can
give frame rates very close to the frame rate on the server if network conditions are good
enough, even when latency is high. It does this by allowing frames to lag behind, so
generally frames returned by a call to render does not include the changes in the render
transaction.

15.3.7.3 Photoreal Cloud render mode options

These options are specific to the "iray_cloud" render context:

mi::IFloat32 batch_update_interval = 1e36

How often a progressive image update is rendered when in batch mode. Ignored when
scheduler_mode is set to "interactive" or "synchronous".

15.3.7.4 1Q Cloud render mode options

These options are specific to the "nitro_cloud" render context:

mi::IString scheduler_mode = "interactive"

In addition to the scheduler modes "interactive", "synchronous", and "batch", itis
also possible to set the scheduler mode to "streaming".

The "streaming" scheduler mode improves the frame rate by introducing a small lag, in
addition to the lag introduced by the interactive mode, which allows rendering to
continue while the previous frame is composited on the server, but otherwise works the
same way.

mi::IFloat32 batch_update_interval = 1e36

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 168

15 Networking 15.3 Iray Bridge

How often a progressive image update is rendered when in batch mode. Ignored when
scheduler_mode is set to something other than "batch".

mi::IUint32 min_samples_per_update = 1

The minimum number of samples per update. Each frame will contain at least this many
iterations. Defaults to 1.

mi::IUint32 max_samples_per_update = @
The maximum number of samples per update. Each frame will contain at the most this
many iterations. Defaults to 0, which means unlimited. The render context will
automatically increase the number of iterations per frame over time when there are no
changes to the scene to increase efficiency. Setting this to, for instance, 1 means that there
will be one rendered frame per iteration. Setting this to 8 can mean that after rendering
for a while, restarting interactive usage can take a long time.

15.3.7.5 Interactive Cloud render mode options

The render mode "irt_cloud" currently does not have any render mode specific options.

15.3.8 Server-side data cache

Any scene data sent to the Iray Bridge server will be persistently stored on the server to avoid
sending it several times. The client will only send hashes of the data and the server will
request data only for hashes it has not already stored in the cache. This greatly reduces the
amount of data that needs to be uploaded if rendering the same scene several times in
different sessions, or if, for instance, large textures are shared between multiple scenes.

The cache is either saved to a folder on a disk drive local to the server, or to a cache server.
Cache servers can be used in certain Iray Bridge configurations to make cached data available
to multiple hosts, not only the host it was saved to. This is very useful in a scenario where
users can reserve nodes from a big cluster of machines but might not get the same Iray Bridge
head node each time, in which case the cached data from the previous session will be
distributed and available to all nodes.

The cache to use is specified by creating an Iray Bridge application and calling
mi::bridge::IIray_bridge_application::set_disk_cache(const char* location). The
location string is either prefixed with “address:” followed by a TCP address of an already
running cache server, or “path:” followed by a local folder path.

Currently, all data uploaded to the Iray Bridge server will be stored permanently in the cache,
so it will grow indefinitely as more and more data is sent to the server. The disk cache folder
together with all the generated files in it can however be removed when not in use to start
with a clean cache.

15.3.9 Proxy scene element

Iray Bridge supports a Proxy scene element that can be attached to Group or Instance
elements. On the client, a Proxy scene element only contains a reference ID to a sub-scene on
the server-side. The sub-scene is, in turn, represented by a Bridge snapshot that is generated
beforehand.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 169

15 Networking 15.3 Iray Bridge

Using a Proxy scene element to represent a sub-scene is useful when you want to support
lower-quality rendering on the client side and minimize the number of sub-scenes that need
to be re-rendered. High-quality rendering that incorporates snapshots of sub-scenes is limited
to the server-side where it makes more sense.

Note:

* The name of the proxy element must be the same as the top-level element of the
sub-scene that the proxy represents. There can only be one top-level element.

* The top level element of the sub-scene must be a legal attachment to the element
that the Proxy is attache to on the client.

* Bridge snapshots of the sub-scenes must be made beforehand. See
mi::bridge::IBridge_server: :create_snapshot_context() for more
information on creating snapshots.

15.3.10 Scene snapshots

In addition to cloud rendering, Iray Bridge also supports saving very efficient scene
snapshots on the server. The snapshots are saved as very small files using the extension .cb
and can be imported just like normal files from the server host where they were saved, as
long as the cb importer plugin is loaded. Snapshots can be used for off-line batch rendering
and can be either full or incremental. Incremental snapshots are ideal for batch rendering of
animations since the import of each incremental snapshot will only update a few scene
elements and then the next frame can be rendered without having to pay for the extra
overhead that is incurred by loading and rendering a new scene.

Iray Bridge snapshots are created on the client by using a snapshot context. The snapshot
context is designed to work analogous to an Iray Bridge render context, except that instead of
rendering it will create snapshots on the server. The snapshot context will also automatically
upload any required data to the server, only sending data that has changed since the last
saved snapshot and also only sending data that is not already available in the server-side data
cache. The snapshot context fires the exact same progress areas as the Iray Bridge render
contexts when uploading data.

Snapshot contexts are created by looking up the mi: :bridge::IIray_bridge_client API
component and calling create_snapshot_context() which returns a
mi::bridge::IIray_bridge_snapshot_context instance. This instance will be tied to the
scene and the scope of the transaction it was created with and snapshots can be created by
calling create_snapshot().

Snapshot data is saved in the data cache configured for the Iray Bridge application on the
server, and the snapshot file with the extension .cb is stored in the server-side folder
configured for the Iray Bridge application. The .cb file contains the ID of the snapshot and
the address or path to the data cache where the data is stored. The .cb file can normally only
be imported from the same host where it was saved.

15.3.11 Example — Rendering a scene with Iray Bridge

Source code

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 170

15 Networking 15.3 Iray Bridge

example_bridge_client.cpp (page 209)
example_bridge_server.cpp (page 216)

Iray Bridge is implemented on top of the Bridge API, a generic API that is part of the Iray
API. This API allows third-party applications that embed Iray to create custom server-side
Bridge applications that can be accessed by custom Bridge clients. The Bridge API provides
all the core features used by Iray Bridge, such as efficient data transfer, server-side caching of
data, video streaming, and so on.

15.3.11.1 Element Data Override Render Context Option

Because Bridge allows data for an element to be different on the server and the client, you can
use the hash_override option supported by Bridge render contexts to enable lower
resolutions for meshes and textures on client devices and switch to higher resolutions when
rendering on a VCA or high end computer running Iray Server.

mi::IMap hash_override =

A Map<String> with element names as keys and hash overrides as values. The map
contents must not be changed after setting this option. To change the overrides a new
map needs to be created. Clear overrides by using a NULL map argument.

Apply the hash_override option to specific scene elements. When Bridge comes across an
element where the hash override is specified, it skips normal serialization and hash
calculation and sends the element to the server. The server loads the cached data specified by
the hash and uses this data instead of the original data on the client.

Note:

* The data for the hash override must be stored in the server-side cache beforehand
by creating a Bridge snapshot that contains the data. Cache misses for elements
with hash overrides are errors. See
mi::bridge::IIray_bridge_client::create_snapshot_context() or
mi::bridge::IBridge_server: :create_snapshot_context() for more
information on creating snapshots.

* Obtain the override hash for an element by using the
mi::bridge::IBridge_server::calculate_hash() method.

* You cannot change the element containing the hash override in any way. Changes
to the element on the client are only visible on the client. Because the server always
uses the hash override, the data on the server remains unchanged. However, you
can change the hash override between render calls.

* The hash_override option is per scene, per scope, and per session, but not per
render context. For example, imagine two render contexts — one iray_cloud and
one irt_cloud — with the same scene, scope, and server address. If you set the
hash_override option for one render context, both render contexts are affected.
This is because the same Bridge session is shared for all render contexts that use the
same server address.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 171

16 Server-based rendering

The following sections describe how to deliver images rendered on a server to the client.

16.1 Example - Running an HTTP server

Source code
example_http_server.cpp (page 236)

This example provides a very simple HTTP server which serves one particular image. The
image is rendered in the same way as previous examples such as “A first image” (page 8).

The example_http_server.cpp (page 236) program uses a simple request handler that
always serves a fixed image, independent of the requested URL. A response handler is
installed to set the content type to image/jpeg. This is just done for illustration purposes; the
content type could also be set directly by the request handler.

Note: For a general introduction to the HTTP server, see HTTP server.

16.2 RTMP server

The RTMP server implements the RTMP standard (see the RTMP specifications
[RTMPProtocolChunkStream] (page 208) , [RTMPMessageFormats] (page 208) and
[RTMPCommandMessages]| (page 208)) and, much like the HTTP server, allows you to write
applications based upon C++. However, unlike HTTP-based applications, RTMP-based
applications are event based. The client sends asynchronous command messages to the
server, and the server responds to these command messages through a set of functions
registered to handle such command messages. This is facilitated by the stateful nature of
RTMP and greatly simplifies application development.

Another difference between RTMP- and HTTP-based applications can be seen in how
efficiently they use TCP connections. HTTP-based applications tend to have the client send a
request, wait for the server’s response, then send another request. Due to the cost of
establishing TCP connections, TCP’s slow start and the congestion avoidance algorithms used
in most operating systems, this mode of TCP connection utilization does not lead to optimal
usage of the bandwidth available. RTMP, on the other hand, is bidirectional and can
multiplex several logical flows over one connection, including keep alive and other meta data
packets, thus avoiding the HTTP request/response round-trip behavior and the creation of
new TCP connections. As a result, RTMP based applications lead to a more optimal usage of
the available bandwidth and thus a richer user experience.

Neuray needs a video encoding plugin to be able to do video streaming unless the data to be
streamed out is already video encoded. A video streaming plugin is installed like any other
plugin: They are loaded explicitly in neuray using the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 172

16 Server-based rendering 16.3 RTMP client

IPlugin_configuration::load_plugin_library() or
IPlugin_configuration: :load_plugins_from_directory() methods. The latter allows
you to offer automatic plugin loading from a specified directory.

Currently neuray comes with one bundled video plugin. This uses the so called "Flash screen
video" format. It is a very simple format which can be played by the Flash client. The format
provides only a very small reduction in the needed bandwidth and thus should only be used
when the network between the server and the clients provides very high bandwidths, for
example, for testing in a LAN.

Other video plugins providing more sophisticated formats may be made available as separate
downloads.

16.3 RTMP client

The RTMP server supports any RTMP client, the industry standard being the one integrated
into Adobe Flash/Flex. The method of connecting to and displaying an RTMP stream from
neuray is identical to connecting to any other RTMP server. Adobe Flex 3 will be the example
platform used; however, the concepts will transfer to any other platform.

The most convenient way to integrate RTMP stream into a Flex application is to create a new
UIComponent which can simply be placed onto your Flex application canvas. This component
will need instances of the three standard classes required to stream RTMP video:
NetConnection, NetStream and Video.

public class Rs_rtmp_video extends UIComponent {
private var m_connection:NetConnection = null;
private var m_video:Video = null;
private var m_stream:NetStream = null;

The first thing that is required is to create a connection to the neuray RTMP server in an init()
function.

public function init(url:String):void

{
m_connection = new NetConnection();
m_connection.addEventListener (NetStatusEvent .NET_STATUS, —
net_status_handler);
m_connection.connect(url);

}

When the connection is complete (or fails), Flex will call the net_status_handler listener
registered in the init() call. This handler can then create the NetStream object and begin
displaying the video.

private function net_status_handler(event:NetStatusEvent) :void

{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 173

16 Server-based rendering 16.3 RTMP client

if (event.info) {
switch (event.info.code) {

case "NetConnection.Connect.Success":
m_stream = new NetStream(m_connection);
m_video = new Video(this.width, this.height);
m_video.attachNetStream(m_stream);
addChild(m_video);
m_stream.play("rs_stream");
break;

case "NetConnection.Connect.Failed":
break;

The above implements a fully functional RTMP video streaming client. However, it is not
particularly useful as it provides no interaction with neuray. For this we need to use the
NetConnection::call interface to call registered RTMP call command message handlers.

The registered call handler is then called via the NetConnection call mechanism:

protected function move_camera(pan_x:Number, pan_y:Number):void
{
var arguments:Object = new Object();
arguments|"pan_x"] = pan_x;
arguments|["pan_y"] = pan_y;
m_connection.call("move_camera",null, arguments);

The move_camera function would typically be called in reaction to mouse movement events.

The server side C++ application handler code for the above command call would look
something like the code snippet below and would be registered on the server side as a call
command handler using the Iray API method

mi::rtmp::IConnection: :register_remote_call_handler() on the
mi::rtmp::IConnection interface.

class Call_event_handler : public
mi: :base::Interface_implement<mi: :rtmp::ICall_event_handler>
{
public:
bool handle(
const char* procedure_name,
const mi::IData* command_arguments,
const mi::IData* user_arguments,
mi::IData** response_arguments)

// Get the x and y coordinates from the user_argument and

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 174

16 Server-based rendering 16.3 RTMP client

// reposition the camera.
return true;

+s

The examples included in the distribution include a complete flash client implementation
with commented source code. This, together with the example RTMP application server
source code provides a great start for building video streaming solutions.

Note: Some older Adobe Flash clients on Linux, for example 9.0.124, cannot show the
delivered video frames fast enough which severely degrades the interactivity. The client
version is provided as a command argument to the connect event handler in the field
flashVer and it is recommended to check this variable and either lower the frame rate
or recommend an Adobe Flash client upgrade to users with old Flash clients.

16.3.1 Example - Running an interactive video-streaming server

Source code
example_rtmp_server.cpp (page 300)
example_rtmp_server.mxml (page 308)
example_rtmp_server_actionscript.as (page 309)

The example programs render a scene and serves an interactive video stream over RTMP. The
provided Flash file (the .swf file) can be reproduced running the free Adobe Flex SDK
compiler mxmlc on the included .mxml file.

Note the following;:

* The example_rtmp_server.cpp (page 300) starts a HTTP server. A Flash application is
fetched with a browser or a standalone Flash client, which the client then uses to view
and interact with the video stream.

* By default, the stream uses the screen video codec, which is provided with the library
and encodes the canvas produced by scene rendering. The encoded frame is sent over
the RTMP stream to the Flash client.

* On the connection, a Remote Procedure Call (RPC) is installed. The RPC is called when
the client interacts with the video stream using the mouse.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 175

17 Customization

Note that these customizations are rarely needed.

17.1 Extending the database with user-defined classes

This section introduces the important API interfaces and steps to extend the database for
user-defined classes:

* Defining the interface of a user-defined class (page 178)
* Implementing a user-defined class (page 178)

* Example — A user-defined class (page 179)

The program example_user_defined_classes.cpp (page 340) demonstrates the
implementation and usage of user-defined classes to be used in conjunction with the Iray
API. In this example, a new class is defined in and used by the main application.

Note: In contrast, the example for plugins, described in “Extending neuray with
plugins” (page 179) demonstrates how to provide additional functionality with
user-defined classes by using plugins.

A simple class called My_class defined in my_class.h (page 348) with a corresponding
interface class IMy_class defined in imy_class.h (page 347) demonstrate custom class
definition.

17.11 Defining the interface of a user-defined class

To define user-defined classes you need to provide an interface with the public methods of
your class. The interface is an abstract base class which contains only pure virtual methods.
The interface must be (directly or indirectly) derived from IUser_class.

The easiest way to define such an interface is by deriving from the mixin class
mi::base::Interface_declare. The first eleven template parameters are used to construct
themi: :base: :Uuid_t (which must be unique). The last template parameter denotes the
actual interface to derive from (should be IUser_class, or another interface (directly or
indirectly) derived from IUser_class).

This definition of the interface is required by the applications (or other plugins) in which the

user-defined class is supposed to be used.

17.1.2 Implementing a user-defined class

You need to implement the interface defined in imy_class.h (page 347).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 176

17.1.3

17 Customization 17.2 Extending neuray with plugins

Deriving your implementation from the mixin User_class is required to ensure that your
implementation class works together with the class framework, including features like
creation, serialization and deserialization. Note that if you derive your implementation class
directly from your interface or indirectly via mi: :base: :Interface_implement it will not
correctly work together with the class framework.

To make serialization and deserialization work, you need to implement
ISerializable::serialize() and ISerializable: :deserialize(). In this example it is
sufficient to write the single member m_foo to the serializer and to read it from the
deserializer, respectively. Furthermore, you need to implement IUser_class: :copy() which
has to create a copy of a given object.

Example - A user-defined class

Source code
imy_class.h (page 347)
my_class.h (page 348)
example_user_defined_classes.cpp (page 340)

The example program demonstrates how to use the user-defined class. Before using the new
class it is necessary to register it with the Iray API. This can be accomplished by
IExtension_api::register_class. Using the user-defined class works the same way as for
all other classes. You can use ITransaction: :create() to create new instances; you can store
them in the database and retrieve them from the database. Here, the example just does a
simply test of the serialization and deserialization functionality.

17.2 Extending neuray with plugins

17.2.1

This section introduces important interfaces and the required steps to add functionality and
package it as a plugin:

1. Implementing a plugin (page 179)
2. Loading a plugin (page 181)

The programs plugin.cpp (page 350) and example_plugins.cpp (page 271) demonstrate
how to provide additional functionality as plugins. This example extends the user-defined
classes described in “Extending the database with user-defined classes” (page 178). The
functionality of the IMy_class interface is provided to the main application by using a
plugin. Therefore, the main application only needs the definition of the interface IMy_class
and the compiled plugin, but not the source code of the implementation.

Implementing a plugin

To implement a plugin you need to provide an implementation of the IPlugin interface. An
example implementation of such a class is shown in the code below. The most important part
is the implementation of the IPlugin: :init() method which has to register all user-defined
classes.

Finally you need to provide a factory function called mi_plugin_factory() that creates an
instance of your implementation of IPlugin. Again, using the example implementation as
shown in the code below is fine.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 177

17 Customization 17.2 Extending neuray with plugins

You need to compile the implementation of your interfaces, your implementation of IPlugin,
and the factory function, and to create a DSO from the object code. Using g++ you can use
commands similar to the following;:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 178

17 Customization 17.3 Extending supported file formats with plugins

g++ -ISIRAY_ROOT/include -fPIC -c plugin.cpp -o plugin.o
g++ -shared -export-dynamic --whole-archive plugin.o -o libplugin.so

17.2.2 Loading a plugin

You can load plugins by passing the filename to the method
IPlugin_configuration::load_plugin_library(). After the plugin has been loaded (in a
way similar to the loading of the DSO for the Iray API itself), the method IPlugin::init()is
called. In this method you need to register all user-defined classes.

Using the user-defined class works the same way as for all other classes. In particular there is
no difference to user-defined classes defined in the main application as described in
“Extending the database with user-defined classes” (page 178).

17.2.3 Example - Creating a plugin
Source code
plugin.cpp (page 350)
example_plugins.cpp (page 271)

This example shows how to add functionality to the API through the integration of a
user-defined class.

17.3 Extending supported file formats with plugins

The section “Implementation of an importer” (page 182) describes the implementation and
usage of custom importers to be used in conjunction with the Iray API In this example the
new importer is defined in and used by the main application for simplicity.

Note: Like any other user-defined class, it is possible to provide custom importers by
using plugins. For an example, see “Extending neuray with plugins” (page 179).

A simple importer called Vanilla_importer is used in the example program
example_importer.cpp (page 240) to demonstrate the basic steps. This importer is an
illustrative skeleton that implements all interfaces but does not actually parse the file content
in a meaningful way.

The section “Implementation of an exporter” (page 183) demonstrates the implementation
and usage of custom exporters to be used in conjunction with the Iray API. In this example
the new exporter is defined in and used by the main application for simplicity.

Note: Like any other user-defined class, it is possible to provide custom exporters by
using plugins. For an example, see “Extending neuray with plugins” (page 179).

A simple exporter called Vanilla_exporter is used in the example program
example_exporter.cpp (page 221) to demonstrate the basic steps. This exporter is an
illustrative skeleton that implements all interfaces but does not actually write elements out; it
just writes their types and names.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 179

17 Customization 17.3 Extending supported file formats with plugins

The section “Implementation of an exporter” (page 183) describes the export of rendered
pixel data to disk. Although neuray supports a wide range of image formats you might want
to add support for your own image format. The example program
example_psd_exporter.cpp (page 283) exports images in the Photoshop PSD file format
[PFFS10] (page 208). The example program demonstrates how to export several canvases
with different content (rendered image, normals, z-buffer, etc.) into the same file.

17.3.1 Implementation of an importer

This section introduces the basic concepts about the implementation and usage of custom
importers used in conjunction with the Iray API:

* Implementing an importer (page 182)
* Registering an importer (page 183)

An example importer program consisting of vanilla_importer.h (page 360) and
example_importer.cpp (page 240) demonstrate these concepts. The importer is called
Vanilla. For simplicity, it is defined in and used by the main application. The importer is
intended as an illustrative skeleton — it implements all interfaces but does not parse the file
content in a meaningful way.

17.3.1.1 Implementing an importer
The implementation of the Vanilla importer is structured in three parts:

* Implementing the IImpexp_state interface
* Implementing the IImporter interface

* Implementing the IImporter::import_elements() method

Instances of IImpexp_state are used to pass information about the current importer state, for
example to recursive calls of importers. The Vanilla importer does not need to carry around
any additional information besides what is required by the interface, therefore this simple
implementation is fine. Note that the simple derivation from
mi::base::Interface_implement suffices here (in contrast to example_plugins.cpp

(page 271)).

The Vanilla importer is given in the implementation of the IImporter interface. Later, an
instance of this class is registered as an importer with the Iray API. Most of the methods
implemented here are defined in the base interface IImpexp_state, as they are common for
importers and exporters. The Vanilla importer claims to handle files with the extension .vnl
and .van. It does not require specific capabilities of the reader to handle these formats.
However, if the reader supports the lookahead capability, it will use a magic header check
instead of relying on file name extensions.

The actual work of the Vanilla importer occurs in the import_elements() method. It is split
into three parts:

1. Creating an import result object
2. Creating a group object which acts as the root group

3. Reading the file line by line

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 180

17 Customization 17.3 Extending supported file formats with plugins

While performing these tasks, the example program demonstrates what type of errors to
detect, how errors can be reported, and how to implement an include file mechanism, and
similar things, with a recursive call to the IImport_api: :import_elements() method.

17.3.1.2 Registering an importer

Registering importers is similar to registering user-defined classes. However, since importers
are different from regular classes (for example, you cannot create instances of them using
ITransaction::create()); you need to use a registration method specific to importers. This
registration method expects a pointer to an instance of the custom importer.

To run the example, you need to create two files called testl.vnl and test2.van, each five lines
long and starting with a line saying VANILLA. For demonstration purposes, the example will
print the generated error messages and the names of the imported elements.

17.3.1.3 Example - Creating an importer for a custom file format

Source code
vanilla_importer.h (page 360)
example_importer.cpp (page 240)

This example registers an importing process for a custom file format defined by classes in a
header file. The file is read and the imported data are printed.

17.3.2 Implementation of an exporter

This section introduces the basic concepts about the implementation and usage of custom
exporters used in conjunction with the Iray API:

* Implementing an exporter (page 183)
* Registering an exporter (page 184)

An example exporter program, consisting of vanilla_exporter.h (page 352) and
example_exporter.cpp (page 221), demonstrate the use of these concepts. The exporter is
called Vanilla. For simplicity, it is defined in and used by the main application.

17.3.2.1 Implementing an exporter

The implementation of the Vanilla exporter in the example source is structured in three parts:

1. Implementing the IImpexp_state interface
2. Implementing the IExporter interface

3. Implementing the IExporter: :export_scene() and the
IExporter::export_elements() methods

Instances of IImpexp_state are used to pass information about the current exporter state, for
example to recursive calls of exporters. The Vanilla exporter does not need to carry around
any additional information besides what is required by the interface, therefore this simple
implementation is fine. With the exception of the element list flag (which is not needed for
exporters), it is the same implementation as for the Vanilla importer. Note that the simple

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 181

17 Customization 17.3 Extending supported file formats with plugins

derivation from mi: :base: :Interface_implement suffices here (in contrast to
example_plugins.cpp (page 271)).

The Vanilla exporter is given in the implementation of the IExporter interface. Later, an
instance of this class will be registered as exporter with the Iray API. Most of the methods
implemented here are actually defined in the base interface IImpexp_state, as they are
common for importers and exporters. The Vanilla exporter claims to handle files with the
extension .vnl and .van. It does not require specific capabilities of the writer to handle these
formats.

The actual work of the Vanilla exporter occurs in the export_scene() and export_elements()
methods. It is split into three parts:

1. Creating the export result object
2. Setting up some data structures

3. Traversing the scene graph and writing the file, element by element

The map is used to perform the depth-first traversal of the scene graphs. As an example, the
loop expands elements of type IGroup and IInstance and follows to the elements mentioned
as their items. Other scene elements that need traversal are not handled in this example.

While performing these tasks the example demonstrates what type of errors to detect, how
errors can be reported, and how to implement an depth-first traversal of the scene graph.

The export_elements() member function uses the same code fragments as the export_scene()
member function above. In its overall structure, the export_elements() member function is
just simpler in that it does not need to recursively follow any elements. It just exports all
elements given in its parameter.

17.3.2.2 Registering an exporter

Registering exporters is similar to registering user-defined classes. However, since exporters
are different from regular classes (for example, you cannot create instances of them using
ITransaction::create()); you need to use a registration method specific to exporters. This
registration method expects a pointer to an instance of the custom exporter.

To run the example, you need to call it with an existing scene file for import. The exporter will
create a file called test3.vnl, which contains the types and names of all elements in the scene.

17.3.2.3 Example - Creating an exporter for a custom file format

Source code
vanilla_exporter.h (page 352)
example_exporter.cpp (page 221)

This example demonstrates the implementation of a importer for a custom file format. The

filename and the MDL search path are provided as command-line arguments.

17.3.3 Example - Creating an image exporter for Photoshop

Source code
example_psd_exporter.cpp (page 283)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 182

17 Customization 17.3 Extending supported file formats with plugins

This example exports images in the Photoshop PSD file format PFFS10. The example program
demonstrates how to export several canvases with different types of scene data (rendered
image, normals, z-buffer, etc.) into the same file.

17.3.3.1 Implementing an image exporter

There are two ways to add support for an image format:

* By using an image plugin that adds support for this file format. The image plugin has
the advantage that it extends the generic export facilities with the new image format.

* By using an explicit method that does the job. the explicit method has the advantage that
you have more freedom and are not bound to the framework of image plugins.

In this example, the goal is to:

1. Export multiple canvases into one file

2. Export the names of the canvases

An explicit method is used because the framework for image plugins does not support these
two features.

The example code is structured as follows:

* Auxilliary methods (from write_int8 to get_pixel_type()) that deal with low-level
export of certain data formats and pixel type properties

* The main method export_psd() that accepts an array of canvases to export

* An adaptor of this main method with the same name that accepts an instance of
IRender_target to export

* An implementation of the IRender_target interface with three canvases that will be
used in this example

* The example code to set up and to render a scene (essentially the same as in
example_rendering.cpp (page 297)).

While the implementation of an image exporter heavily depends on the image format in
question, there are often similarities in the file format structure and in the tasks to be
accomplished. Typically, there is some sort of file header with meta information, followed by
the actual pixel data.

To export a PSD file, the example program iterates over all the canvases to compute the
needed metadata (width, height, number of layers, bits per channel) and reject invalid inputs.
Next, the file is opened and the file header is written.

The next section in the PSD file format is the layer and mask information section. This section
is split into two parts:

* The first part contains all the layer records which are basically a header with metadata
for each layer, including the name of the layer.

* The second part contains the actual pixel data for each layer (in the same order as
described by the layer records).

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 183

17 Customization 17.3 Extending supported file formats with plugins

Finally, there is a last section named image data section. This section is supposed to contain
the pixel data of all layers merged. It is primarily needed for applications that do not deal
with the layer and mask information section. In this example, the pixel data of the first canvas
is exported again (for simplicity).

When writing your own image exporter, or importer, there are several conversion tasks you
have to handle:

1. Mapping neuray pixel types (see Types) to pixel types of the image format and/or vice
versa.

2. Conversion of pixel data to a different pixel type (if needed).
3. Flipping the scanline order (if needed). In neuray, scanlines are ordered bottom-up.

4. Different tiling of pixel data.

The methods IImage_api::read_raw_pixels() and IImage_api: :write_raw_pixels() can
be very handy for the last three tasks. If requested, they can convert the pixel type as needed
and flip the scanline order. They also convert the data between a possibly tiled canvas and a
plain memory buffer.

17.3.3.2 Using the PSD example exporter

To demonstrate the PSD exporter, the example code is similar in its overall structure to the
program in “Example — Importing and rendering a scene file” (page 10). To demonstrate the
export of multiple canvases, a different implementation of the IRender_target interface is
used. This implementation holds three canvases:

* One for the rendered image
* One for the normals

* One for the z-buffer

An additional method normalize() modifies the values for the normals and z-buffer such that
the data is in the range [0,1] expected by most image formats.

After the image has been rendered, the render target is passed to the method export_psd(),
which exports all canvases of the render target into the given file. For comparison, the
canvases are additionally exported into individual PNG files.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 184

18 Reference

The following sections provide detailed information about supported file formats and URI
schemes, canvas names in render targets, and light path expression grammar.

18.1 Supported file formats and URI schemes

The following sections describe supported URI schemes, file formats for scene files and
images, as well as the binary storage format.

18.1.1 URI schemes

All import and export methods use a common naming convention to identify files based on
URIs as defined in [RFC3986] (page 208). Currently only the URI scheme file is supported.
An empty URI scheme defaults to the file scheme. URI authorities are not supported, except
for the empty URI authority, which is needed in some cases to resolve ambiguities (see
below).

Within the file scheme relative and absolute URI paths are supported (see Section 4 in
[RFC3986] (page 208)) URI paths are mapped to file system paths as follows.

* On Linux and Mac OS, URI paths are treated as file system paths without any
translation.

* On Windows, slashes in relative URI paths are replaced by backslashes to obtain the file
system path.

* On Windows, absolute URI paths are mapped to file system paths according to the
following table:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 185

18 Reference 18.1 Supported file formats and URI schemes

URI path File system path Comment
/C:/dir1/dir2/file C:\dir1\dir2\file
/C/dir1/dir2/file C:\dir1\dir2\file This mapping is supported in

addition to the first one since a
colon is a reserved character in
URIs.

/dir1/dir2/file \dir1\dir2\file This mapping is only supported
for top-level directory names
not consisting of a single letter.

//share/dir1/dir2/file \\share\dir1\dir2\file This mapping requires an
(otherwise optional) empty URI
authority (//) since otherwise
the share name is interpreted as
URI authority.

Unless the {shader} variable, explained below, is used, the relative path is resolved relative
to the current working directory of the application, or for recursive imports and exports,
relative to the scene file referencing it.

The {shader} variable can be used in URI paths, which is expanded by neuray. The URI path
may start with the string {shader} followed by a slash and a relative path, in which case the
relative path is resolved relative to the site’s shaders directory. If several shaders directories
have been configured, they are searched in turn. The {shader} variable is only supported for
import methods, not for export methods. It is primarily intended to be used for MDL
modules (.md1 files).

18.1.2 Scene file formats

neuray has built-in support for importing scene data from the following file formats:

* mental images binary scene format .mib, see “Binary storage format” (page 192)

* Material Definition Language (MDL) materials .md1, see “Material Definition
Language” (page 97) and [MDLSpecification] (page 208)

neuray has built-in support for exporting scene data to the following file formats:
* mental images binary scene format .mib, see “Binary storage format” (page 192)

In addition to that the neuray installation comes with plugins to support both the import and
export of the mental images scene format .mi, see [Driemeyer05] (page 208). These plugins
need to be loaded explicitly in neuray using the

IPlugin_configuration: :load_plugin_library() or
IPlugin_configuration::load_plugins_from_directory() methods.

In addition, a neuray installation can be extended with importer and exporter plugins that
support other file formats. Such plugins are written using the Iray APIL They need to be
loaded explicitly in neuray using the IPlugin_configuration::load_plugin_library() or
IPlugin_configuration: :load_plugins_from_directory() methods. The latter allows

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 186

18 Reference 18.1 Supported file formats and URI schemes

you to offer automatic plugin loading from a specified directory. New importers are derived
from the Ilmporter interface and new exporters are derived from the IExporter interface.

The following interfaces and function calls work with scene data and file formats:
°* ITmport_api

°* IExport_api

18.1.3 The .axf material file format

The AxF file format from X-Rite stores digital material representations, most notably
measured materials from their BTF scanning technology. The format supports different
representations categorized in profiles. neuray supports the profiles for spatially varying
BRDF representations with non-refracting clearcoat (profile “AxFSvbrdf,” versions 1, 2 and 3),
for car paint representations (profiles “AxFCarPaint” and AxFCarPaintRefract,” version 1)
and for volumetric representations (profile “AxFVolumetric,” version 1). These
representations use a simple material model and a set of textures to control the input
parameters of those material models.

The AxF file format is supported in neuray with an import plugin for the . axf file extension
and a corresponding MDL module. Once both parts have been set up properly, an import of
AXF files works in the same way as an import of MDL modules. The result of an AxF file
import is then a MDL material in the neuray database with the respective textures from the
AXF file set for its parameters. If available, additional preview images are also imported into
the database.

18.1.3.1 Prerequisites before importing AxF files

1. The AxF importer is a neuray plugin, which is contained in the neuray release. To enable
AXF file support in your application you need to load the plugin explicitly in neuray
using the IPlugin_configuration::load_plugin_library() or
IPlugin_configuration::load_plugins_from_directory() methods. The latter
allows you to offer automatic plugin loading from a specified directory.

2. For the importer to function properly, you need to place the MDL file
nvidia/axf_importer/axf_importer.mdl, which is in the md1 directory of the neuray
release, with its directory structure in a place where neuray will find it in your
application. In particular, your MDL search path needs to be configured to find the
nvidia directory. See IRendering_configuration for more details on how to configure
the search path.

3. AxF files are imported in the same way as MDL files, thus the MDL search path must be
configured by you to point to the AxF files. See IRendering_configuration for more
details on how to configure the search path.

18.1.3.2 Importing AxF files

Axf files with the .axf extension are imported in the same way as MDL files. You can import
them using the corresponding API calls and you can include them in .mi files.

* You can import AxF files with the neuray API function
IImport_api::import_elements(). Similar to MDL file imports, URIs to AxF files

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 187

18 Reference 18.1 Supported file formats and URI schemes

cannot be given as absolute paths and the directory of the AxF file has to be in the
configured set of MDL paths, as explained in the previous section. A possible URI could
be:

"{shader}/axf_file.axf"

* You can use the regular include statement in a .mi file to import an AxF file, for
example:

Sinclude "axf_file.axf"

18.1.3.3 Import results in the database

The AxF importer loads the AXF file and converts its base profile representation to an
equivalent MDL material. It creates the following elements in the neuray database:

1. The textures for the base profile representation.

2. A new MDL material is created as a variant of the
nvidia/axf_importer/axf_importer/svbrdf or
nvidia/axf_importer/axf_importer/carpaint material, where the imported textures
are used as new default values for the respective texture2d parameters. Those
parameters are annotated as hidden() parameters, while the other parameters remain
visible for later parameter editing when the material is instantiated and assigned to
objects.

For example, if the AxF file is called example_file.axf, then the corresponding MDL
material will be located in a new MDL module named mdl: :axf: :example_file, and
the MDL material will be named like the AxF material in the AxF file, for example
Leather, followed by the representation (currently always _svbrdf or _carpaint) The
fully qualified MDL material name is then in this example
mdl::axf::example_material::Leather_svbrdf.

The new MDL module is not automatically saved to disk.

3. AxF files can contain preview images of a material at different resolutions. They are also
imported and placed in the database.

If you use the API function IImport_api: :import_elements(), you can get the database
names of all imported elements from the returned import result.

18.1.4 The mi_importer plugin

Use the mi_importer plugin to enable the import of a scene to the NVIDIA Iray .mi file
format. To enable the plugin it must be loaded in neuray using either the
IPlugin_configuration::load_plugin_library() or the
IPlugin_configuration::load_plugins_from_directory() method.

18.1.4.1 Importer configuration

In addition to the standard options described for IImporter: :import_elements, the
mi_importer plugin has an additional configuration option:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 188

18 Reference 18.1 Supported file formats and URI schemes

* mi_progress_callback of type IProgress_callback. When configured, this callback
is used to report the progress of the import operation.

18.1.5 The mi_exporter plugin

Use the mi_exporter plugin to enable the export of a scene to the NVIDIA Iray .mi file format.
To enable the plugin it must be loaded in neuray using either the
IPlugin_configuration::load_plugin_library() or the
IPlugin_configuration::load_plugins_from_directory() method.

18.1.5.1 Exporter configuration

In addition to the standard options described for IExporter: :export_elements and
IExporter::export_scene, the mi_exporter plugin has additional configuration options:

*mi_write_binary_vectors_limit of type mi: :IUint32. Geometric objects with
vectors larger than this size are exported in a binary format. It saves space and speeds
up both export and import, while making the data humanly unreadable.

* mi_md1l_new_naming_scheme of type mi: :IBoolean. Determines whether to use the
new MDL naming scheme for function calls and material instances. Default: true.

* mi_mdl_root of type mi: :IString. When exporting memory-based MDL modules, the
given value defines the location of the root directory to which the MDL data is exported.

* mi_mdle_export_mode of type mi: :IString: Defines, how MDLE files are handled
during the export. The following modes are supported:

* absolute MDLE files are exported using absolute paths. This is the default
behavior.

* relative MDLE file paths are made relative to the scene export location, if possible.

* bundle MDLE files are copied next to the scene or into the directory defined with
the exporter option mi_mdle_export_directory.

* mi_mdle_export_directory of type mi: :IString: the name/path of the directory
MDLE files should be copied to in bundle - mode.

* mi_uvtile_mode_marker of type mi: :IString: The preferred export-mode for memory
based UDIM textures. Can be any of <UVTILE®>, <UVTILE1>, <UDIM>. Default:
<UVTILE®>.

* mi_create_verbatim_textures of type mi: :IBoolean: Determines whether verbatim
(inline) textures will be created (if necessary and possible), or whether such textures will
be exported into separate files instead. Default: true. Default: <UVTILE®>.
18.1.6 Image file formats

neuray has no built-in support for reading and writing image data in different file formats.
This support is solely provided by image plugins that can be dynamically loaded.

The following image plugins are currently available:

nv_openimageio

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 189

18 Reference 18.2 Render target canvases

The OpenlmagelO library! offers support for various image formats, including EXR, GIF,
HDR, JPG, PNG, and TIFF.

dds

The DDS (DirectDraw Surface) image format was established by Microsoft. The use of
this plugin is recommended to add support for 3D textures, cubemaps, and mipmaps.

ct

The CT format is a lossless image format created by mental images.
Your neuray installation can be extended with image plugins that support other file formats.

Every image plugin needs to be loaded explicitly in neuray using the
IPlugin_configuration::load_plugin_library() or

IPlugin_configuration: :load_plugins_from_directory() methods. The latter allows
you to offer automatic plugin loading from a specified directory.

18.1.7 Binary storage format

neuray can read a special binary storage format which is optimized for fast reading and needs
less disk space than a typical .mi file. Files containing this format are required to have the
.mib file name extension. Files in the .mib format can be generated from any of the
supported input file formats using the export functionality of neuray; see the

IExport_api: :export_scene() and IExport_api: :export_elements() functions. The .mib
file contains basically the same information as the file from which it was generated only in an
optimized format.

Note: Be sure to use the same version of neuray when exporting (writing) and reading a
particular .mib file. If you use a different version of neuray to read the .mib file, neuray
will not read the file and an error message will be displayed.

18.2 Render target canvases

The canvas types reflected by the IRender_target_base: :get_canvas_type() function
determine what is rendered to the canvas. Each type of canvas has a native pixel type that
best encodes the data generated by the renderer. This type is listed below with the description
of each canvas type. Note that applications may choose to use a different type. Pixels will be
converted accordingly.

Please note that not all canvas types are supported everywhere. See the limitations subsection
in the individual render mode sections for the relevant limitations on canvases.

A list of supported canvas types and their optional parameters follows. Most canvas types
support an optional parameter PARAM_PROCESSING_DISABLED, which defaults to false. Setting
this parameter to true on a canvas will disable internal postprocessing of that canvas and
instead write the raw output of the renderer to it.

TYPE_RESULT

1. https://github.com/OpenImageIO/oiio

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 190

https://github.com/OpenImageIO/oiio

18 Reference

18.2 Render target canvases

Anmi::math::Color ormi::Float32_3 canvas that contains the rendered image with
all contributions, the beauty pass, including the alpha channel if the pixel type supports it.

The behavior of the result buffer may be controlled with the following, optional

parameters:

Canvas_pa rameter

Type Default

Effect

PARAM_COLOR_LPE

PARAM_ALPHA_LPE

PARAM_SCALE

mi::IString nullptr

mi::IString nullptr

mi::Float32 1

Controls the LPE for the color
channels. If provided, contributions
to the canvas are limited to paths
which match the given expression.

Controls the LPE for the alpha
channel, if available in the canvas.
The default that is used if no value is
provided is controlled by the
"iray_default_alpha_lpe" option.
Note that a primary feature of matte
objects is to catch shadows. Shadows
cast by synthetic objects upon matte
objects may make the alpha channel
opaque. Whether or not this is the
case depends on the active alpha
LPE.

Controls upscaling. A value of 1
indicates regular rendering, while a
value of 2 will cause the rendered
image to be scaled to double its
original resolution in width and
height. Upscaling is handled by the
Deep Learning-based Denoiser
(page 40), which must be made
available for this option to be
accepted. While the denoiser must be
available, it does not need to be
globally active, i.e. upscaling implies
denoising for upscaled canvases
without mandating denoising of
other canvases.

The canvas resolution must meet the
requirements described in the
subwindow group of the ICamera
interface, where all values are
multiplied by the upscaling factor.
Note that this is true regardless of
whether the denoiser is actually
active.

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

191

18 Reference 18.2 Render target canvases

Light path expressions are explained in depth in a separate section (page 201). Some
common examples are:

Expression Resulting image

ED .x L Diffuse pass commonly used in conventional compositing
workflows. The last event on the light path before the eye was a
diffuse event.

EG .*L Glossy pass commonly used in conventional compositing
workflows. The last event on the light path before the eye was a
glossy event.

ES .xL Specular pass commonly used in conventional compositing
workflows. The last event on the light path before the eye was a
specular event, that is, a mirror reflection or specular refraction.

EDS .xL Diffuse part of caustics cast by a mirror reflection or specular
refraction on another surface.

E .*x <L'key'> All direct and indirect light contribution coming from the key
light group, which are all lights in the scene with the handle
attribute set to key.

E 'crate’ .* L Alldirectand indirect light falling onto any object in the scene
with the handle attribute set to crate.

The alpha channel of each sample may be transparent (alpha 0) only if the alpha LPE
matches the light transport path. Common examples of LPEs for the alpha channel are:

Expression Resulting image

E [LmLmsLe] Alpha is based solely on primary visibility. This is the approach
used traditionally by many renderers.

E [LmLe] Alpha is based on primary visibility. Matte shadows are opaque.

E T* [LmLe] Transmitting objects make the alpha channel transparent. This is
the default behavior.

E <TS>* [LmLe] Only specular transmission makes the alpha channel transparent.
This avoids unexpected results in scenes with materials that have
a diffuse transmission component.

The API provides a utility function,

IRendering_configuration: :make_alpha_expression(), to generate useful alpha
expressions including the ones listed above, and
IRendering_configuration::make_alpha_mask_expression() to generate alpha mask
expressions.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 192

18 Reference 18.2 Render target canvases

Note that alpha LPEs operate independently of color LPEs. In particular, the paths that
affect the alpha channel of a RGBA canvas are not restricted to those that affect the color
channels.

See “LPEs for alpha control” (page 205) for more information on alpha LPEs.

TYPE_ALPHA

Anmi: :Float32 canvas that contains the alpha channel. This canvas works in analogy
to the TYPE_RESULT canvas described above, including the optional use of
PARAM_ALPHA_LPE. Other parameters are not supported.

TYPE_BSDF_WEIGHT

Anmi: :Float32_3 canvas that contains approximate color weights for the constituent
BSDFs of the material at the first hit. This value will generally reflect textures (bitmap
and procedural) used to color material components. Note that the exact values are
subject to change.

TYPE_DEPTH

Anmi::Float32 canvas that contains the depth of the hit point along the (negative)
z-coordinate in camera space. The depth is zero at the camera position and extends
positive into the scene.

TYPE_RAYLENGTH

Anmi::Float32 canvas that contains the distance between the camera and the hit point
measured in camera space. The depth is zero at the camera position and extends positive
into the scene. The distance is related to TYPE_DEPTH by a factor that is the inner product
of the (normalized) ray direction and the negative z-axis (0,0,-1).

TYPE_NORMAL

Anmi: :Float32_3 canvas that contains the normalized surface shading normal in
camera space including the averaged effect from normal perturbation functions.

TYPE_WORLD_POSITION

Anmi: :Float32_3 canvas that contains the position of the first hit in world space.

TYPE_TEXTURE_COORDINATE

Anmi: :Float32_3 canvas that contains the i-th texture coordinate at the hit point, where
i is stored in the canvas parameter PARAM_INDEX.

TYPE_OBJECT_ID

Anmi::math::Color canvas that contains the ID for the scene element at the hit point.
Each scene element can have an optional attribute named label of type mi: :Uint32
which defines this ID. IDs are mapped to colors by applying the bytes of the ID in order
of increasing significance to 8bit RGBA. If this scene element is imported from a .mi file,
this label can be set using the tag statement in .mi file syntax.

TYPE_MATERIAL_ID

Anmi::math::Color canvas that contains the user-defined material ID of the material at
the hit point. This ID can be used to identify regions in the image that show the same
material or regions without material. The latter are colored black. IDs are mapped to
colors by applying the bytes of the ID in order of increasing significance to 8bit RGBA.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 193

18 Reference 18.2 Render target canvases

TYPE_MATERIAL_TAG

Anmi::math::Color canvas that contains an internal implementation-specific ID of the
surface material at the hit point. This ID can be used to identify regions in the image that
show the same material or regions without material. The latter are colored black. IDs are
mapped to colors in an implementation-specific manner.

TYPE_MULTI_MATTE

A scalar or vector canvas that contains one mask per channel. One to four channels can
be combined in a single canvas and multiple canvases of this type can be rendered in
parallel.

Each channel contains a coverage mask that is essentially equivalent to the result of
rendering an alpha channel with the LPE provided by IRendering_

configuration: :make_alpha_mask_expression(handle, false, ALPHA_PRIMARY),
except that the selection is based on object IDs (the instance’s 1abel attribute) or material
IDs (the material’s material_id attribute) instead of a handle string.

The canvas parameter PARAM_MULTI_INDEX controls the generation of the masks. Each of
the vector’s components controls the contribution to the respective pixel component.
Positive values will yield a mask containing visible elements where the object ID matches
the provided value. Negative values will yield a mask containing visible elements where
the material’s ID matches the provided value after flipping its sign. A component value
of 0 is interpreted as a terminator. Any subsequent non-zero components are ignored.

Note that the number of requested masks must not be larger than the number of channels
in the canvas’ pixel type.

While this canvas reproduces behavior found in a few other rendering packages, users
should note that alpha LPEs are generally more flexible than simple visibility /coverage
masks. More importantly, compositing workflows based on color LPEs will generally
yield superior results than workflows based on ID or alpha masks.

TYPE_SHADOW

Anmi::math::Color canvas that contains the shadow in the scene. More precisely, the
canvas contains the light contributions that are missing at a certain point because it is
blocked by a some object, the shadow casters. With this definition, adding the shadow
canvas to the result canvas removes the shadow. In practice, a weighted version of the
shadow buffer can be added; with a small positive weight to lighten the shadow or a
small negative weight to darken the shadow.

TYPE_AMBIENT_OCCLUSION
Anmi::math::Color canvas that contains the ambient occlusion in the scene in the
range from 0 (fully occluded) to 1 (not occluded). The computation of the buffer can be
controlled using the following attributes on the IAttribute_set class:
mi: :Float32 ambient_falloff max_distance = FLT_MAX

World space distance beyond which potential occlusion does not influence result of
ambient occlusion.

mi: :Float32 ambient falloff min_distance = FLT MAX

World space distance below which all potential occlusion fully influences result of
ambient occlusion.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 194

18 Reference 18.2 Render target canvases

mi: :Float32 ambient_falloff =1
Exponent to be used for weighting the occlusion value between falloff min and max
distance. The default 1 blends linearly.

Note that the Iray Interactive render mode offers additional options (page 70) that
affect the ambient occlusion buffer.

TYPE_RESULT_IRRADIANCE

Anmi: :Float32_3 canvas that contains the estimated irradiance at the hit point. The
canvas contains black for direct environment hits.

Like the TYPE_RESULT canvas, the contents of this canvas can be restricted to the light
transport paths that match the expression obtained by querying the canvas parameters
for PARAM_COLOR_LPE. Consider using irradiance expressions for this canvas.

Also make sure that in the rendering options (page 59) "iray_nominal_luminance" and
"iray_firefly_filter" are properly setup to avoid wrong simulation behavior.
In addition, make sure that no tonemapping is being used on the result, as it will remap

the simulated irradiance values, thus rendering them useless for lighting measurements
and verification.

TYPE_RESULT_IRRADIANCE_PROBE
Anmi: :Float32_3 canvas that contains the estimated irradiance at the probe points
defined in the IIrradiance_probes container attached to the ICamera .
Like the TYPE_RESULT canvas, the contents of this canvas can be restricted to the light
transport paths that match the expression obtained by querying the canvas parameters
for PARAM_COLOR_LPE. Consider using irradiance expressions for this canvas.
Also make sure that in the rendering options (page 59) "iray_nominal_luminance" and
"iray_firefly_filter" are properly set up to avoid wrong simulation behavior.
In addition, make sure that no tonemapping is being used on the result, as it will remap

the simulated irradiance values, thus rendering them useless for lighting measurements
and verification.

TYPE_MOTION_VECTOR

An mi: :Float32_3 canvas that contains the motion vectors.

TYPE_CONVERGENCE_HEATMAP

Generates ami: :Float32 convergence heatmap for the render target canvas i, where i is
obtained by querying PARAM_INDEX. The referenced canvas must be of type TYPE_RESULT
or TYPE_SHADOW. Note that the referenced canvas must precede this canvas in the render
target, i.e., forward references are not allowed.

If the SSIM predictor is not enabled, this canvas is not supported.

TYPE_POST_TOON

Anmi::math::Color ormi::Float32_3 canvas. The contents are generated by
applying a cartoon shading effect to the i-th render target canvas, where i is obtained by
querying PARAM_INDEX. This effect may be applied to canvases of type TYPE_RESULT,
TYPE_AMBIENT_OCCLUSION, and TYPE_BSDF_WEIGHT, provided that those canvases are
not upscaled. Note that the referenced canvas must precede this canvas in the render
target, i.e., forward references are not allowed.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 195

18 Reference 18.2 Render target canvases

The cartoon shading effect depends on object IDs for edge detection. Users should
ensure that IDs are assigned in a sufficiently random fashion to support edge detection.

It is recommended to enable the "progressive_aux_canvas" scene option and to disable
any camera/lens effects such as depth of field (unless the sample count is high enough).

For canvases other than TYPE_RESULT, the background will be replaced with the scene
environment or backplate, as applicable. This background will pass through the same
postprocessing operations (e.g. denoising and tonemapping) as any canvas of type
TYPE_RESULT. Note that this is true even if no result canvas is otherwise present in the
render target.

The details of the cartoon effect are controlled by the following canvas parameters.

Canvas_parameter Type Default Effect

PARAM_INDEX mi::Sint32 0 Selects the canvas which serves as the input to
the cartoon effect, as described above.

PARAM_EDGE_COLOR mi::Float32_4 (0,0,0,1) Controls the color of object outlines.

PARAM_SCALE mi::Float32 0 Controls a faux surface shading effect if the
toon input canvas is not TYPE_RESULT. Values
< 0 enable smooth faux lighting based on
surface BSDF weight and normal orientation.
A value of 0 uses the toon input canvas as-is.
Values > 0 apply a quantization effect to the
faux lighting for a cartoon look.

PARAM_BIAS mi::Float32_2 (1/3,1/2) Scales the range in which a difference in
normals will start to yield a line. Lower values
will already yield a line between adjacent faces
with similar normals whereas higher values
will yield lines only on sharper edges. Useful
values lie in a [0,1] range with both values
fairly close together. The second value must be
greater than or equal to the first.

An object ID of 0 may be used to exclude objects from receiving cartoon edges. Such
objects will still receive the optional faux lighting effects where applicable.

It is also possible to use the toon effect without any input canvas by supplying a
PARAM_INDEX of -1. In this case, edges (and optionally faux lighting effects) will be
applied to a white canvas. No background replacement will take place.

TYPE_SELECTION_OUTLINE

Anmi::math::Color ormi::Float32_3 canvas. The contents are generated by drawing
an outline around all scene elements which have a boolean attribute "selected" set to
true.

The effect is overlaid onto the i-th render target canvas, where i is obtained by querying
PARAM_INDEX. This effect may be applied to any canvas that is not upscaled. Note that
the referenced canvas must precede this canvas in the render target, i.e., forward
references are not allowed. It is also possible to use the outline effect without any input

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 196

18 Reference 18.2 Render target canvases

canvas by supplying a PARAM_INDEX of -1. In this case, edges will be applied to a black,
transparent canvas.

The outline effect partially depends on object IDs for edge detection. Users should
ensure that IDs are assigned in a sufficiently random fashion to support edge detection.

It is recommended to disable the "progressive_aux_canvas" scene option and any
camera/lens effects such as depth of field.

The details of the outline effect are controlled by the following canvas parameters.

Canvas_parameter Type Default Effect

PARAM_INDEX mi::Sint32 0 Selects the canvas onto which outlines are
written, as described above.

PARAM_SCALE mi::Float32 2 Controls the width of object outlines.

PARAM_EDGE_COLOR mi::Float32_4 (0,0,0,1) Controls the color of object outlines between
selected and unselected objects or the
environment.

PARAM_EDGE_COLOR_2 mi::Float32_4 (0,0,0,0) Controls the color of object outlines between
selected objects.

PARAM_SHADE_COLOR mi::Float32_4 (0,0,0,0) Controls a color overlaid over the entire
selected object.

18.2.1 Canvas nhames

Previous releases of this API encoded canvas type and parameter in a single string. A
mapping between these render target canvas names and canvas types and parameters is
listed below. The same mapping is also available via the API of
IRendering_configuration: :map_canvas_name() and

IRendering_configuration: :map_canvas_parameters(). Note, however, that the
combination of canvas type and parameters is more powerful and not all information will be
retained in the generated string.

result, result lpexpr= Ip-expressions, or lpexpr= Ip-expressions
Corresponds to TYPE_RESULT.

The optional 1pexpr=. .. part specifies either one light path expression, or two LPEs
separated by a semicolon. These LPEs correspond to canvas parameters of
PARAM_COLOR_LPE and PARAM_ALPHA_LPE, respectively.

alpha or alpha lpexpr= Ip-expression
Corresponds to TYPE_ALPHA with an optional PARAM_ALPHA_LPE.

depth
Corresponds to TYPE_DEPTH.

distance
Corresponds to TYPE_RAYLENGTH.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 197

18 Reference 18.2 Render target canvases

normal
Corresponds to TYPE_NORMAL.

texture_coordinate[i]
Corresponds to TYPE_TEXTURE_COORDINATE with i mapped to a canvas parameter of
type PARAM_INDEX.

Omitting the index expression, i.e. a name of "texture_coordinate", is allowed and is
equivalent to "texture_coordinate[0]".

object_id
Corresponds to TYPE_OBJECT_ID.

material_id
Corresponds to TYPE_MATERIAL_ID.

generated_material_id
Corresponds to TYPE_MATERIAL_TAG.

diffuse

A canvas that contains all light transport paths which are diffuse at the first bounce. This
corresponds to TYPE_RESULT with a PARAM_COLOR_LPE of "E D .* L".

specular

A canvas that contains all light transport paths which are specular at the first bounce.
This corresponds to TYPE_RESULT with a PARAM_COLOR_LPE of "E S .* L".

glossy

A canvas that contains all light transport paths which are glossy at the first bounce. This
corresponds to TYPE_RESULT with a PARAM_COLOR_LPE of "E G .* L".

emission

A canvas that contains the emission contribution from directly visible light sources and
emitting surfaces. This corresponds to TYPE_RESULT with a PARAM_COLOR_LPE of "E L".

shadow
Corresponds to TYPE_SHADOW.

ambient_occlusion
Corresponds to TYPE_AMBIENT _OCCLUSION.

irradiance or irradiance lpexpr= [p-expression
Corresponds to TYPE_RESULT_IRRADIANCE with an optional LPE.
Like the result canvas, the contents of the irradiance canvas can be restricted to the

light transport paths that match Ip-expression. Consider using irradiance expressions for
this canvas.

irradiance_probe or irradiance_probe lpexpr= Ip-expression
Corresponds to TYPE_RESULT_IRRADIANCE_PROBE with an optional LPE.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 198

18 Reference 18.3 Light path expressions

Like the result canvas, the contents of the irradiance_probe canvas can be restricted
to the light transport paths that match Ip-expression. Consider using irradiance
expressions for this canvas.

motion_vector
Corresponds to TYPE_MOTION_VECTOR.

convergence_heatmap|[i]

Corresponds to TYPE_CONVERGENCE _HEATMAP for the result buffer i. Note that that buffer
must precede this buffer in the render target, i.e., forward references are not allowed.

Omitting the index expression, i.e. a name of "convergence_heatmap", is allowed and is
equivalent to "convergence_heatmap[0]".

toon[i]
Corresponds to TYPE_POST_TOON for the buffer i. Note that the referenced canvas must
precede this canvas in the render target, i.e., forward references are not allowed. Also
note that no other parameters may be encoded in this canvas name. Please consider
using TYPE_POST_TOON and ICanvas_parameters.

Omitting the index expression, i.e. a name of "toon", is allowed and is equivalent to
"toon[0]".

selection_outline[7]
Corresponds to TYPE_SELECTION_OUTLINE for the buffer i. Note that the referenced
canvas must precede this canvas in the render target, i.e., forward references are not
allowed. Also note that no other parameters may be encoded in this canvas name. Please
consider using TYPE_SELECTION_OUTLINE and ICanvas_parameters.

Omitting the index expression, i.e. a name of "selection_outline", is allowed and is
equivalent to "selection_outline[0]".

multi_matte[id/[,...]]
Corresponds to TYPE_MULTI_MATTE. Between one and four IDs control the IDs used to
generate the masks.

18.3 Light path expressions
18.3.1 Introduction

Light path expressions (LPEs) describe the propagation of light through a scene, for example
starting from a source of light, bouncing around between the objects of the scene and
ultimately ending up at the eye. The paths that light takes through a scene are called light
transport paths. LPEs may be used for example, to extract only specific light contributions
from a renderer into separate image buffers.

Light path expressions were first proposed as a description of light transport by Paul
Heckbert [Heckbert90] (page 208). Heckbert suggested that reqular expressions — typically
used to describe patterns of characters in text — could also describe light transport events
and paths. The alphabet of LPEs consists of event descriptions, that is, of interactions
between light particles and the scene.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 199

18 Reference 18.3 Light path expressions

18.3.2 Events

Each event of a path, that is, each interaction of light with the scene objects and materials, is
described by its type (for example, emission or reflection), the mode of scattering (for
example, diffuse or specular), and an optional handle.

A full event is described as < t m h >, where

* tis the event type, either R (reflection), T (transmission), or V (volume interaction),
* m is the scattering mode, either D (diffuse), G (glossy), or S (specular), and

* his a handle in single quotes, for example. ' foo'. This position may be omitted from the
specification. In that case, any handle is accepted. See below for details.

Spaces are ignored unless they occur inside a handle string. The dot character (.) may be
used as a wildcard in any position. It accepts any valid input. For example, a diffuse
reflection event may be specified as <RD. >, or, omitting the handle, <RD>. A specular
transmission event identified with the handle "window" may be specified as <TS'window' >.

18.3.3 Handles

Handles are strings of ASCII characters, enclosed in single quotes ('). The following
characters must be escaped by prefixing them with a backslash inside handles: \, ', and
The assignment of a handle as a name for a scene element is typically made possible through
the graphical interface of an application.

18.3.4 Sets and exclusion

As an alternative to the type, mode, and handle specifiers described above, each position of
the event triple may contain a character set enclosed in square brackets. Any element of the
set will be accepted. For example, <[RT] . .> matches all reflection events and all transmission
events.

The complementary set is specified by first including the caret (") character. For example,
<.[”S]> matches any non-specular event and <. . [~ 'ground']> matches any event that is
not identified with the handle "ground".

Event sets also work on full events. For instance, [<RG><TS>] matches glossy reflection and
specular transmission events. Note that this is different from <[RT][GS]>, which accepts
glossy transmission and specular reflection in addition to the events accepted by the previous
expression.

18.3.5 Abbreviations

In order to make specification of LPEs simpler, event descriptions may be abbreviated. An
event in which only one of type, mode, or handle is explicitly specified may be replaced by
that item. For example, <R. .> may be abbreviated as R. Likewise, <. . " foo'> may be
abbreviated as ' foo'. Note the difference between <TS. >, which accepts a single specular
transmission event, and TS, which accepts an arbitrary transmission event followed by an
arbitrary specular event. Finally, . matches any event except the special events described
below.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 200

18 Reference 18.3 Light path expressions

Abbreviation rules also apply to event sets, thatis, [<T..><.S.>] reduces to [TS]. Again
note that this is different from TS (without brackets).

18.3.6 Constructing expressions

LPEs may be constructed by combining event specifications through concatenation,
alternation, and quantification. The following operators are supported and have the same
semantics as they would for standard regular expressions. For expressions A and B and
integers n and m withm >= n:

AB Accepts first A, then B

A|B Accepts A or B

A? Optionally accepts A, that is, A may or may not be present

Ax Accepts any number of occurrences of A in sequence, including zero times

A+ Accepts any non-empty sequence of A’s. It is equivalent to AA*

A{n} Accepts exactly n consecutive occurrences of A. For example, A{3} is
equivalent to AAA.

A{n,m} Accepts from n to m, inclusively, occurrences of A

A{n,} Equivalent to A{n}A*

The precedence from high to low is quantifiers (?, *, +, {}), concatenation, alternatives. Items
can be grouped using normal parentheses (and).

18.3.7 Special events

Each LPE is delimited by special events for the eye (or camera) and light vertices. These
events serve as markers and must be the first and last symbols in a LPE.

LPEs may be specified starting either at the light or at the eye. All expressions must be
constructed in such a way that every possible match has exactly one eye and one light vertex.
This is due to the nature of LPEs: They describe light transport paths between one light and
the eye. Note that this does not mean that light and eye markers must each show up exactly
once. For example, "E (D La | G Le)" is correct, because either alternative has exactly one
light and one eye marker: "E D La" and "E G Le". On the other hand "E D La?",

"E (D | La)",and "E (D | La) Le" areill-formed, because they would match paths with
zero or two light markers.

In the abbreviated form, the eye marker is simply E and the light marker is L. These items are
special in that they represent two distinct characteristics: the shape of the light (or camera
lens) and the mode of the emission distribution function. The full notation therefore differs
from that of the standard events.

In the full form, a light source as the first vertex of a transport path is described as

< L h m h > where L is the light type, and m and h are as before. The first pair of type and
handle describes the light source itself. The type L can be one of Lp (point shape), La (area
light), Le (environment or background), Lm (matte lookup), Lv (emissive volume) or L (any
type). In the case of alpha expressions, Lms (matte shadows) is supported in addition to the

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 201

18 Reference 18.3 Light path expressions

aforementioned types. The second pair describes the light’s directional characteristics, that is,
its EDFE. (This form loosely corresponds to the full-path notation introduced by Eric Veach in
[Veach97] (page 208), Section 8.3.2.)

As before, the handles are optional. Furthermore, the EDF specification may be omitted.
Thus, <La> is equivalent to <La. . .>and La.

Especially when dealing with irradiance (rather than radiance) render targets, it is convenient
to use a special form of LPE, called irradiance expression. Such expressions contain an
irradiance marker, rather than an eye marker. Using this marker, it is possible to describe light
transport up to the point of the irradiance measurement, rather than up to the camera.

The full form of the irradiance marker is <I h>, the abbreviated form is simply I. As before, h
represents an optional handle. If set, irradiance will only be computed on those surfaces that
have a matching handle.

18.3.8 Advanced operations

Several operations exist in order to make specifying the right expression easier. These
operations do not add expressive power, but simplify certain tasks.

When an application provides a means for multiple output images (or canvases) to be
rendered at the same time, expressions may be re-used in subsequent canvas names. This is
achieved by assigning a name to the expressions that should be re-used, for example:

1. caustics: L.*SDE

2. LE | Scaustics

In this example, the second canvas will receive both caustics and directly visible light sources.
As illustrated above, variables are introduced by specifying the desired name, followed by a
colon and the desired expression. Variable names may contain any positive number of
alphanumeric characters and the underscore character, with the limitation that they may not
start with a terminal symbol. Since all terminals of the LPE grammar start with capital letters,
it is good practice to start variable names with lowercase letters. Note that sub-expressions
cannot be captured by variable names.

Variables are referenced by applying the dollar (or value-of) operator to the variable name.

Expressions may be turned into their complement by prefixing them with the caret symbol.
An expression of type " A will yield all light transport paths that are not matched by A. Note
that the complement operator cannot be applied to sub-expressions: "~ (L.*E)" is valid, but
"L™(.*)E" isnot.

It is possible to compute the intersection of two or more expressions by combining them with
the ampersand symbol. Expressions of type A & B will match only those paths which are
matched by both A and B.

18.3.9 Matte object interaction

The color of matte objects is determined by two types of interaction. The first is the lookup
into the environment or backplate. This contribution is potentially shadowed by other objects
in the scene and may be selected by expressions ending in Lm. Selection of such contributions

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 202

18 Reference 18.3 Light path expressions

can be further refined by specifying the handle of the matte object, for example,
<Lm ‘crate’>.

The second type of contributions is made up of effects that synthetic objects and lights have
on matte objects. This includes effects like synthetic lights illuminating matte objects and
synthetic objects reflected by matte objects. For these contributions, matte objects behave
exactly like synthetic objects.

With regards to LPEs, matte lights illuminating synthetic objects behave exactly as if they
were synthetic lights.

18.3.10 LPEs for alpha control

Some additional considerations are necessary when using LPEs to control alpha output.

By definition, alpha is transparent (alpha 0) only for paths that match the provided
expression. Note that this means that light transport paths which do not reach a light source
or the environment because they are terminated prematurely (for whatever reason) are
opaque. This is necessary to avoid undesired semi-transparent areas in the standard case.

This has implications for the creation of object masks. Since the mask is supposed to be
completely transparent also when undesired objects are hit by camera rays, these paths have
to be captured by the expression even if they are terminated. This requires a special type of
LPE, that is, one that captures terminated paths. Such LPEs are only allowed for alpha
channels. For example, the expression "E (["'crate'] .*)? L?" will render a mask for the
object 'crate’.

Shadows received by matte objects may also affect the opacity of the alpha channel. This
opacity can be removed by capturing paths which end in Lms.? Adding opacity in areas of
matte shadow to the previously shown mask expression may be achieved by slightly
changing the LPEto "E ([~ 'crate'] .*) L? | E ["Lms]".

Note that presence or absence of Lms controls whether shadows which are received by a
certain matte object make the alpha channel opaque. This affects all matte shadow, regardless
of how it was cast, and by which objects.

The API provides functions IRendering_configuration: :make_alpha_expression() and
IRendering_configuration::make_alpha_mask_expression() to generate various
common alpha expressions, including masks.

18.3.11 Example LPEs

The universal light path expression, "L .* E", accepts all light transport paths. By default,
this expression yields the same result as not using LPEs at all. Remember that this is
equivalent to "L .*E" (whitespace is ignored) and "E.*L" (the expression can be reversed).

Direct illumination can be requested by specifying "L .? E",or "L . E" if directly visible
light sources are not desired. Indirect illumination is then specified by "L .{2,} E".

2. The mask expression in the previous paragraph captures all light types and thus also makes matte shadows
transparent.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 203

18 Reference 18.3 Light path expressions

Compositing workflows often use the concept of diffuse and reflection passes. They can be
specified with the LPEs "E <RD> L" and "E <RS> L", respectively. Note that these passes as
specified above do not contain indirect illumination. "E <RD> .* L" extends this to global
illumination where the visible surfaces are diffuse. If only diffuse interactions are desired,

"E <RD>#* L" can be used.

Caustics are usually described as "E D S .* L". The expression "E D (S|G) .* L"or

"E D [GS] .* L" also considers glossy objects as caustics casters. If, for example, only
specular reflection caustics cast by an object identified with a handle "crate" are desired, the
expression is changed to "E D <RS'crate'> .% L". This can further be restricted to caustics
cast onto "ground" from a spot light by changing the expression to

"E 'ground' <RS'crate'> .* <LpG>".

Assuming an expression variable called caustics was defined in a previous expression,
"L.{2,5}E & "“Scaustics" will match any path that has the specified length and is not a
caustic.

18.3.12 Summary of typical LPEs

Typical production workflow structures in digital compositing often employ a set of standard
elements that can be represented by light path expressions. The following expressions define
the color (RGB) component of rendering;:

LPE Description

ED .x L Diffuse pass commonly used in conventional compositing workflows. The
last event on the light path before the eye was a diffuse event.

EG .x L Glossy pass commonly used in conventional compositing workflows. The
last event on the light path before the eye was a glossy event.

ES .xL Specular pass commonly used in conventional compositing workflows.
The last event on the light path before the eye was a specular event, that is,
a mirror reflection or specular refraction.

EDS .xL Diffuse part of caustics cast by a mirror reflection or specular refraction on
another surface.

E .* <L'key'> Alldirect and indirect light contribution coming from the key light group,
which are all lights in the scene with the handle attribute set to key.

E 'crate’ .* L Alldirect and indirect light falling onto any object in the scene with the
handle attribute set to crate.

The alpha channel can also be specified by light path expressions:

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 204

18 Reference 18.3 Light path expressions

LPE Description

E [LmLe] Alpha is based solely on primary visibility. This is the approach used
traditionally by many renderers.

E T+ [LmLe] Transmitting objects make the alpha channel transparent. This is the
default behavior.

E <TS>x [LmLe] Only specular transmission makes the alpha channel transparent. This
avoids unexpected results in scenes with materials that have a diffuse
transmission component.

The graphical interface of an application may provide a way of naming and storing LPEs for
reuse. Common LPEs like the above may also be part of a standard set of named LPEs in an
application interface.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 205

18 Reference

18.3 Light path expressions

18.3.13 Light path expression grammar

”w O o< 4o mrr

=

< type mode handle >
Lp

La

Lv

Le

Lm

Lms

< light-type light-handle mode handle >
<Ih>

type

mode

handle

I

[A..]
["A]
AB
A|B

A{n}

A{n,m}

A{n, }

(...)

" expression

expression-1 & expression-2
name: expression

Sname

light

eye

reflection type
transmission type

volume interaction type
diffuse mode

glossy mode

specular mode

handle h

event

point light type

area light type

emissive volume
environment or background light type
matte lookup type
shadows cast onto matte objects (alpha expressions only)
light source full form
irradiance marker
abbreviation for < type . .>
abbreviation for <. mode .>
abbreviation for <. . handle >
abbreviation for <I.>
match anything (in context)
match any element in set
match all but A

A followed by B

AorB

zero or one A

zero or more As

one or more As

a sequence of n As

n to m occurences of A
equivalent to A{n}A*
grouping

complement of expression
match both expressions
assign expression to name
use value of name

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

206

19 Bibliography
T. Driemeyer, Rendering with mental ray, 3nd edn. Springer, Wien New York, 2005 (mental
ray handbooks, vol. 1).

Paul Heckbert. “Adaptive Radiosity Textures for Bidirectional Ray Tracing.” Computer
Graphics (SIGGRAPH "90 Proceedings), vol. 24, no. 4, August 1990, pp. 145-154.

ANSI, ANSI Approved Standard File Format for Electronic Transfer of Photometric Data,
ANSI/IES LM-63-02.

NVIDIA Corporation, Santa Clara, California, United States. NVIDIA Iray® API reference.

NVIDIA Corporation, Santa Clara, California, United States. NVIDIA Material Definition
Language: Technical Introduction. Version 1.1

NVIDIA Corporation, Santa Clara, California, United States. NVIDIA Material Definition
Language: Language Specification. Version 1.1

mental images GmbH, Berlin, Germany. mental ray® Manual, version 3.9. Online
Documentation.

Adobe Systems Incorporated, San Jose, USA. Adobe Photoshop File Formats Specification,'
June 2012.

Berners-Lee, et. al., Uniform Resource Identifier (URI): Generic Syntax, RFC 2396, August
1988.

Adobe Systems Incorporated, San Jose, USA. RTMP Command Messages, April 2009.
Adobe Systems Incorporated, San Jose, USA. RTMP Message Formats, April 2009.
Adobe Systems Incorporated, San Jose, USA. RTMP Chunk Stream, April 2009.

Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD Thesis,
Stanford University, 1997.

Johannes Jendersie. Fast Spectral Upsampling of Volume Attenuation. Ray Tracing Gems 2,
2021.

1. https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 207

https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/

20 Source code for examples

20.1 example_bridge_client.cpp

[Fkkhhhkhhhkhhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhkhhkhhhkhhrkhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
*hkkkkhkkhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkhhhrhhkhhrrkk/

#include <iostream>
#include <sstream>
#include <string>

#include <mi/neuraylib.h>
#include "example_shared.h"

#include "example_render_target_simple.h"

std::string bytes_to_string(mi::Float64 size)

{
char buffer[256];
if(size > 1048576.0)
snprintf(buffer, sizeof(buffer)-1, "%.1f MB", size/1048576.0);
else if(size > 1024)
snprintf(buffer, sizeof(buffer)-1, "%.1f kB", size/1024.0);
else
snprintf(buffer, sizeof(buffer)-1, "%d bytes", static_cast<mi::Sint32>(size));
return buffer;
}

class Progress_callback

: public mi::base::Interface_implement<mi::neuraylib::IProgress_callback>
{
public:

void progress(mi::Float64 value, const char* area, const charx message)

{

if(strcmp(area, "bridge_bytes_uploaded"”) == 0)
m_bridge_bytes_uploaded = value;

else if(strcmp(area, "bridge_pending_cache_status") == 0)
m_bridge_pending_cache_status = value;

else if(strcmp(area, "bridge_pending_data_serialization") == 0)
m_bridge_pending_data_serialization = value;

else if(strcmp(area, "bridge_pending_hash_calculations") == 0)

m_bridge_pending_hash_calculations = value;

else if(strcmp(area, "bridge_total_bytes_to_upload") == 0)
m_bridge_total_bytes_to_upload = value;

else if(strcmp(area, "bridge_updated_elements") == 0)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 208

20 Source code for examples 20.1 example_bridge_client.cpp

m_bridge_updated_elements = value;
else if(strcmp(area, "bridge_upload_state") == 0)
m_bridge_upload_state = value;
else if(strcmp(area, "bridge_uploaded_element_bytes") == 0)
m_uploaded_element_uploaded_bytes = value;
else if(strcmp(area, "bridge_uploaded_element") == 0)
if(message) {
std::stringstream s;
s << "\"" << message << "\"";
m_uploaded_element_name = s.str();

} else
m_uploaded_element_name = "unnamed element";
m_uploaded_element_size = value;
} else

return; // just print Bridge-related progress messages
if(m_bridge_upload_state == 8) {

fprintf(stderr, "Bridge detecting changes: %11lu modified element(s) detected.\n",
static_cast<mi::Size>(m_bridge_updated_elements));

} else if(m_bridge_upload_state == 1) {

fprintf(stderr, "Bridge calculating hashes: %1lu pending calculation(s), "
"%s uploaded.\n",
static_cast<mi::Size>(m_bridge_pending_hash_calculations),
bytes_to_string(m_bridge_bytes_uploaded).c_str());

} else if(m_bridge_upload_state == 2) {
fprintf(stderr, "Bridge querying cache status: %llu pending request(s), "
"%s uploaded.\n",
static_cast<mi::Size>(m_bridge_pending_cache_status),
bytes_to_string(m_bridge_bytes_uploaded).c_str());

} else if(m_bridge_upload_state == 3) {

if(m_bridge_pending_data_serialization > 0.0)

fprintf(stderr, "Bridge upload: %s/%s (%.01f%%) total - data serialization for "
"%1lu element(s) pending.\n",
bytes_to_string(m_bridge_bytes_uploaded).c_str(),
bytes_to_string(m_bridge_total_bytes_to_upload).c_str(),
(m_bridge_bytes_uploaded / m_bridge_total_bytes_to_upload * 100.0),
static_cast<mi::Size>(m_bridge_pending_data_serialization));

else

fprintf(stderr, "Bridge upload: %s/%s (%.01f%%) total - %s/%s (%.01f%%) for %s.\n",
bytes_to_string(m_bridge_bytes_uploaded).c_str(),
bytes_to_string(m_bridge_total_bytes_to_upload).c_str(),
(m_bridge_bytes_uploaded / m_bridge_total_bytes_to_upload * 100.0),
bytes_to_string(m_uploaded_element_uploaded_bytes).c_str(),
bytes_to_string(m_uploaded_element_size).c_str(),
(m_uploaded_element_uploaded_bytes / m_uploaded_element_size * 100.0),
m_uploaded_element_name.c_str());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 209

20 Source code for examples 20.1 example_bridge_client.cpp

} else if(m_bridge_upload_state 4) {

fprintf(stderr, "Bridge waiting for server to finish processing the upload.\n");

} else if(m_bridge_upload_state == 5) {
fprintf(stderr, "Bridge upload completed.\n");
m_bridge_upload_state = -1;

private:
mi::Float64 m_bridge_bytes_uploaded;
mi::Float64 m_bridge_pending_cache_status;
mi::Float64 m_bridge_pending_data_serialization;
mi::Float64 m_bridge_pending_hash_calculations;
mi::Float64 m_bridge_total_bytes_to_upload;
mi::Float64 m_bridge_updated_elements;
mi::Float64 m_bridge_upload_state;
std::string m_uploaded_element_name;
mi::Float64 m_uploaded_element_size;
mi::Float64 m_uploaded_element_uploaded_bytes;

|3

class Iray_bridge_snapshot_callback
: public mi::base::Interface_implement<mi::bridge::IIray_bridge_snapshot_callback>

{

public:
void ready(mi::Sint32 error_code, const char* /xfile_namex*/)
{
if(error_code == 0)
fprintf(stderr, "Successfully created cb snapshot.\n");
else

fprintf(stderr, "Failed to create cb snapshot.\n");
m_condition.signal();

}

void progress(mi::Float64 value, const char* area, const char* message)

{

fprintf(stderr, "Progress: %.4f %s %s\n", value, area, message);

}

void wait_for_ready_callback()

{
m_condition.wait();
}
private:
mi: :base::Condition m_condition;

+s

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)

{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 210

20 Source code for examples 20.1 example_bridge_client.cpp

// Set the search path for .mdl files.

mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());

check_success(rc->add_mdl_path(mdl_path) == 0);

check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Bridge client, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("iray_bridge_client" MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

void import_and_store_scene(mi::neuraylib::INeuray* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(database->get_global_scope());
mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

check_success(scene.is_valid_interface());

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

// And store it in the database
transaction->store(scene.get(), "the_scene");
scene = 9;

transaction->commit();

}

void rendering(
mi::neuraylib: :INeuray* neuray, const char* bridge_server_url, const char* security_token)
{
// Configure the Iray Bridge client
mi::base::Handle<mi: :bridge::IIray_bridge_client> iray_bridge_client(
neuray->get_api_component<mi: :bridge::IIray_bridge_client>());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 21

20 Source code for examples 20.1 example_bridge_client.cpp

}

check_success(iray_bridge_client.is_valid_interface());
check_success(iray_bridge_client->set_application_url(bridge_server_url) == 0);
check_success(iray_bridge_client->set_security_token(security_token) == 0);

// Get the database, the global scope of the database, and create a transaction in the global

// scope.

mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

check_success(database.is_valid_interface());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(database->get_global_scope());

mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(scope->create_transaction());

check_success(transaction.is_valid_interface());

// Create the render context using the iray_cloud render mode.

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->edit<mi::neuraylib::IScene>("the_scene"));

mi::base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray_cloud"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

mi::base::Handle<mi: :IString> video_format(transaction->create<mi::IString>());

video_format->set_c_str("jpg");

render_context->set_option("video_format", video_format.get());

scene = 0;

// Create the render target and render the scene

mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());

mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));

mi: :base::Handle<mi: :neuraylib::IProgress_callback> callback(
new Progress_callback());

render_context->render(transaction.get(), render_target.get(), callback.get());

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_bridge_client.png", canvas.get());

transaction->commit();

void make_snapshot(mi::neuraylib::INeuray* neuray)

{

// Get the database, the global scope of the database, and create a transaction in the global

// scope.

mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(database->get_global_scope());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 212

20 Source code for examples 20.1 example_bridge_client.cpp

mi::base::Handle<mi::neuraylib::ITransaction> transaction(scope->create_transaction());

// Create a context for the snapshot.

mi::base::Handle<mi: :bridge::IIray_bridge_client> iray_bridge_client(
neuray->get_api_component<mi: :bridge::IIray_bridge_client>());

mi::base::Handle<mi: :bridge::IIray_bridge_snapshot_context> snapshot_context(
iray_bridge_client->create_snapshot_context(transaction.get(), "the_scene"));

// Create a callback instance, trigger snapshot creation, and wait for the callback to signal
// completion of the snapshot.
mi::base::Handle<Iray_bridge_snapshot_callback> callback(new Iray_bridge_snapshot_callback());
mi::Sint32 result
= snapshot_context->create_snapshot(transaction.get(), "snapshot.cb", callback.get());
if(result >= 0)
callback->wait_for_ready_callback();

transaction->commit();

}

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc '= 5) {
std::cerr << "Usage: example_bridge_client <scene_file> <mdl_path> <bridge_url> \\\n"
" <security_token>" << std::endl;
keep_console_open();
return EXIT_FAILURE;

}

const char* scene_file = argv[1];
const char* mdl_path = argv[2];
const char* bridge_server_url = argv[3];
const char* security_token = argv[4];

// Access the neuray library
mi::base::Handle<mi::neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();

check_start_success(result);

// Import the scene into the DB
import_and_store_scene(neuray.get(), scene_file);

// Upload scene and render on the Bridge server, then export the rendered image to disk
rendering(neuray.get(), bridge_server_url, security_token);

// Make a snapshot of the scene on the Bridge server
make_snapshot(neuray.get());

// Shut down the neuray library

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 213

20 Source code for examples 20.1 example_bridge_client.cpp

check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 214

20 Source code for examples 20.2 example_bridge_server.cpp

20.2 example_bridge_server.cpp

/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.

kkkkkkhhkkhhhhhhhkhhhkhhhhhhhhhhkhhhhdhhhhhhhhhkhhhkhhkhhhkhhhkhhkhhhkkhhkkdhkkk/

#include <iostream>

#include <mi/neuraylib.h>

#include "example_shared.h"

class Application_session_handler

{

: public mi::base::Interface_implement<mi::bridge::IApplication_session_handler>

public:

Application_session_handler(const std::string& security_token)
: m_security_token(security_token) { }

bool on_session_connect(mi::bridge::IServer_session* session)

{
const char* security_token = session->get_security_token();
return security_token && m_security_token == security_token;

}

private:

}s

std::string m_security_token;

void run_bridge_server(

mi::neuraylib::INeuray* neuray,
const char* disk_cache_path,

const char* snapshot_path,

const char* bridge_server_address,
const char* application_path,
const char* security_token,

const charx ssl_cert_file,

const char* ssl_private_key_file,
const char* ssl_password)

// Start the HTTP server handling the Bridge connection using WebSockets.
mi::base::Handle<mi: :http::IFactory> http_factory(

neuray->get_api_component<mi: :http::IFactory>());
mi::base::Handle<mi::http::IServer> http_server(http_factory->create_server());
if(ssl_cert_file && ssl_private_key_file && ssl_password)

http_server->start_ssl(

bridge_server_address, ssl_cert_file, ssl_private_key_file, ssl_password);

else

http_server->start(bridge_server_address);

// Access the API component for the Iray Bridge server and create and application.

mi: :base::Handle<mi: :bridge::IIray_bridge_server> iray_bridge_server(
neuray->get_api_component<mi: :bridge::IIray_bridge_server>());

check_success(iray_bridge_server.is_valid_interface());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 215

20 Source code for examples 20.2 example_bridge_server.cpp

mi::base::Handle<mi: :bridge::IIray_bridge_application> iray_bridge_application(
iray_bridge_server->create_application(application_path, http_server.get()));

if(iray_bridge_application.is_valid_interface()) {

// Configure the application.
check_success(iray_bridge_application->set_disk_cache(disk_cache_path) == 0);
check_success(iray_bridge_application->set_snapshot_path(snapshot_path) == 0);
mi: :base::Handle<mi: :bridge: :IApplication_session_handler> application_session_handler(
new Application_session_handler(security_token));
check_success(iray_bridge_application->set_session_handler(
application_session_handler.get()) == 0);

// Run the Iray Bridge server for a fixed time span.
iray_bridge_application->open();

sleep_seconds(60);
iray_bridge_application->close();

}

http_server->shutdown();

}

void configuration(mi::neuraylib::INeuray* neuray)
{
// Load the OpenImageIO, Iray Photoreal, and Iray Bridge server plugins.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi::neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("iray_bridge_server" MI_BASE_DLL_FILE_EXT) == 0);
}

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc '= 6 && argc '= 9) {
std::cerr << "Usage: example_bridge_server <disk_cache_path> <snapshot_path> \\\n"

<< <bridge_server_address> <application_path> <security_token> \\\n"
<< " [<ssl_cert_file> <ssl_private_key_file> <ssl_password>]"
<< std::endl;
keep_console_open();

return EXIT_FAILURE;

}

const charx disk_cache_path = argv[1];

const char* snapshot_path = argv[2];

const char* bridge_server_address = argv[3];

const char* application_path = argv[4];

const char* security_token = argv[5];

const char* ssl_cert_file = argc >= 9 ? argv[6] : 0;
const char* ssl_private_key_file = argc >= 9 ? argv[7] : 0;
const char* ssl_password = argc >= 9 ? argv[8] : 0;

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 216

20 Source code for examples 20.2 example_bridge_server.cpp

check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get());

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Listen to Bridge clients
run_bridge_server(neuray.get(), disk_cache_path, snapshot_path, bridge_server_address,
application_path, security_token, ssl_cert_file, ssl_private_key_file, ssl_password);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 217

20 Source code for examples 20.3 example_configuration.cpp

20.3 example_configuration.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>
#include "example_shared.h"

class Logger : public mi::base::Interface_implement<mi::base::ILogger>
{
public:
void message(
mi::base: :Message_severity level, const char* module_category,
const mi::base::Message_details&, const char* message)
{
const char* log_level = get_log_level(level);
fprintf(stderr, "Log level = '%s’, module:category = '%s’', message = '%s’\n",
log_level, module_category, message);

// Do not return in case of fatal log messages since the process will be terminated anyway.
// In this example just call exit().
if(level == mi::base::MESSAGE_SEVERITY_FATAL)
exit(EXIT_FAILURE);

private:
const char* get_log_level(mi::base::Message_severity level)
{
switch(level) {
case mi::base::MESSAGE_SEVERITY_FATAL:
return "FATAL";
case mi::base: :MESSAGE_SEVERITY_ERROR:
return "ERROR";
case mi::base::MESSAGE_SEVERITY_WARNING:
return "WARNING";
case mi::base::MESSAGE_SEVERITY_INFO:
return "INFO";
case mi::base::MESSAGE_SEVERITY_VERBOSE:
return "VERBOSE";
case mi::base::MESSAGE_SEVERITY_DEBUG:
return "DEBUG";
default:
return "";
}
}
i

int main(int /*argc*/, charx /xargvx/[])

{
// Access the neuray library
mi: :base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 218

20 Source code for examples 20.3 example_configuration.cpp

// Create an instance of our logger
mi::base::Handle<mi: :base::ILogger> logger(new Logger());

// Open new block to ensure that all handles except neuray went out of scope
// when calling shutdown() after the end of this block.

{

// Configure the neuray library before startup. Here we set our own logger.
check_success(neuray->get_status() == mi::neuraylib::INeuray::PRE_STARTING);
mi::base::Handle<mi: :neuraylib::ILogging_configuration> logging_configuration(
neuray->get_api_component<mi: :neuraylib::ILogging_configuration>());
logging_configuration->set_receiving_logger(logger.get());

// other configuration settings go here, none in this example

// Start the neuray library

mi::Sint32 result = neuray->start();

check_start_success(result);

check_success(neuray->get_status() == mi::neuraylib::INeuray::STARTED);

// scene graph manipulations and rendering calls go here, none in this example.

// Shut down the library

check_success(neuray->shutdown() == 0);

check_success(neuray->get_status() == mi::neuraylib::INeuray::SHUTDOWN) ;
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual

219

20 Source code for examples 20.4 example_exporter.cpp

20.4 example_exporter.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <iostream>

#include <mi/neuraylib.h>

#include "example_shared.h"

#include "vanilla_exporter.h"

mi::base::Handle<mi: :neuraylib::IExporter> exporter;

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi::base::Handle<mi: :neuraylib::IRendering_configuration> rendering_configuration(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rendering_configuration->add_mdl_path(mdl_path) == 0);
check_success(rendering_configuration->add_mdl_path(".") == 0);

// Register the Vanilla exporter.

mi: :base::Handle<mi: :neuraylib::IExtension_api> extension_api(
neuray->get_api_component<mi: :neuraylib::IExtension_api>());

check_success(extension_api.is_valid_interface());

exporter = new Vanilla_exporter;

check_success(extension_api->register_exporter(exporter.get()) == 0);

// Load the .mi importer plugin.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> plugin_configuration(
neuray->get_api_component<mi::neuraylib::IPlugin_configuration>());
check_success(plugin_configuration->load_plugin_library(
"mi_importer" MI_BASE_DLL_FILE_EXT) == 0);

}

void test_exporter(mi::neuraylib::INeuray* neuray, const charx scene_file)

{
// Get the database, the global scope of the database, and create a transaction in the global
// scope.

mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

check_success(database.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

// Import the scene file
mi: :base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi::neuraylib: :IImport_api>());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 220

20 Source code for examples 20.4 example_exporter.cpp

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

const char* root_group = import_result->get_rootgroup();

// Export the scene to a file test3.vnl (implicitly using the Vanilla exporter).

mi::base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<const mi::neuraylib::IExport_result> export_result(
export_api->export_scene(transaction.get(), "file:test3.vnl", root_group));

check_success(export_result.is_valid_interface());

// Print all messages
for(mi::Size i = @; i < export_result->get_messages_length(); ++i)
std::cout << export_result->get_message(i) << std::endl;

check_success(export_result->get_error_number() == 0);
transaction->commit();

}

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc '= 3) {
std::cerr << "Usage: example_exporter <scene_file> <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}
const char* scene_file
const char* mdl_path

argv[1];
argv[2];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Test the Vanilla exporter
test_exporter(neuray.get(), scene_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);

// Unregister the Vanilla exporter.
mi: :base::Handle<mi: :neuraylib::IExtension_api> extension_api(
neuray->get_api_component<mi::neuraylib::IExtension_api>());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 221

20 Source code for examples 20.4 example_exporter.cpp

check_success(extension_api->unregister_exporter(exporter.get()) == 0);
exporter = 0;

extension_api = 9;

neuray = 9;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 222

20 Source code for examples

20.5 example_fibers.cpp

20.5 example_fibers.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include

#include
#include

#include
#include
#include

unsigned
unsigned
unsigned
unsigned

unsigned

{

<mi/neuraylib.h>

"example_shared.h"
"example_render_target_simple.h"

<io
<ma
<ve

int
int
int

int

int

stream>
p>
ctor>

lcg_a
lcg_c
lcg_m
lcg_prev

get_random

134775815;
123456 ;

1 << 31;
33478921;

_uint()

mi::Uint64 val = (lcg_a * lcg_prev + lcg_c) % lcg_m;

lcg_pr

ev =

static_cas

return lcg_prev;

}

t<unsigned int>(val);

float get_random_float(const float& min, const float& max)

{

return ((float(get_random_uint()) * (max - min)) / float(lcg_m)) + min;

}

mi::neuraylib::IFibers* create_fibers_ball(mi::neuraylib::ITransaction* transaction)

{

// Some constants to define the fibers ball

const
const
const
const
const
const
const
const
const

mi:
mi:
mi:
mi:
mi:
mi:
mi:
unsi
unsi

:Float32_3 s
:Float32 s
:Float32 m
:Float32 m
:Float32 b
:Float32 t
:Float32 r

gned int n
gned int n

phere_center(0.f, 0.f, 0.f);

phere_radius = 0.2f;
in_length = 0.8f;
ax_length = 1.0f;
ase_radius = 0.01f;
ip_radius = 0.002f;
andomness = 0.2f;
um_fibers = 1000;

um_vertices_per_fiber = 9; // must be at least 4

mi::neuraylib::IFibers *fibers = transaction->create<mi::neuraylib::IFibers>("Fibers");
fibers->set_type(mi::neuraylib: :FIBER_TYPE_BSPLINE);

// the fibers will have an implicit U mapping from 0.0 to 1.0 along them from base to tip

std::vector<mi::Float32_4> control_points;
control_points.reserve(num_vertices_per_fiber);

for (unsigned int n=@; n<num_fibers; ++n) {

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual 223

20 Source code for examples 20.5 example_fibers.cpp

// draw a random position on a sphere of radius 'sphere_radius’ and center 'sphere_center’
// generating random direction vectors
const float rx = get_random_float(-1.0f, 1.0f);
const float ry = get_random_float(-1.0f, 1.0f);
const float rz = get_random_float(-1.0f, 1.06f);
mi::Float32_3 dir(rx, ry, rz);
dir.normalize();

// first vertex of the fiber
const mi::Float32_3 first_pos = sphere_center + sphere_radius * dir;

// compute tangent space around the direction
mi::Float32_3 tu = (dir.y * dir.y > dir.x * dir.x) ? mi::Float32_3(0.0f, dir.z, -dir.y) : mi::Float32
mi::Float32_3 tv = cross(tu, dir);
tv.normalize();
tu = cross(tv, dir);
tu.normalize();

// compute a random (approximate) length of the fiber, between 'min_length’ and 'max_length’
const mi::Float32 fiber_length = get_random_float(min_length, max_length);

// (approximate) length of a segment of the fiber
const mi::Float32 segment_step = fiber_length / float(num_vertices_per_fiber - 1);

// step for the radius
const mi::Float32 radius_step = (tip_radius - base_radius) /
float(num_vertices_per_fiber - 1);

control_points.clear();

// first compute all the normal B-spline control points along with their radii
// and save them in ’'control_points’ and ’'radii’
for (unsigned int k = @; k < num_vertices_per_fiber; ++k) {

mi::Float32_3 v = first_pos + float(k) * segment_step * dir;

if (k > @) {
// all vertices get randomly moved in the tangent space of the direction
// except the first one, which is the base vertex of the fiber

const float du = get_random_float(-randomness*0.5f, randomness*0.5f);
const float dv get_random_float(-randomness*@.5f, randomness*0.5f);
v += (du * tu + dv * tv);

}
const mi::Float32 radius = base_radius + float(k) * radius_step;

control_points.push_back(mi::Float32_4(v.x, v.y, v.z, radius));

// compute an extra point to be put at the very beginning of the B-spline,
// this is a ghost point (or phantom point) that has the effect of making
// the curve effectively start at 'control_points[@]’

mi::Float32_4 ghost_point = (2.0 * control_points[@]) - control_points[1];
mi::Float32 ghost_radius = control_points[@].w;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 224

20 Source code for examples 20.5 example_fibers.cpp

// add a fiber that has the ghost point at the beginning and all the computed control points
const mi::neuraylib::Fiber_handle_struct fh = fibers->add_fiber(num_vertices_per_fiber + 1);

fibers->set_control_point(fh, 8, mi::Float32_3(ghost_point.x, ghost_point.y, ghost_point.z));
fibers->set_radius(fh, @, ghost_radius);

// add control points/radii
fibers->set_fiber_data(fh, 1, control_points.data(), control_points.size());

}

return fibers;

}

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)

{
// Create the fibers object
mi::base::Handle<mi: :neuraylib::IFibers> fibers_object(create_fibers_ball(transaction));
transaction->store(fibers_object.get(), "fibers_obj");

// Create the instance for the fibers object
mi::base::Handle<mi: :neuraylib::IInstance> instance(

transaction->create<mi: :neuraylib::IInstance>("Instance"));
instance->attach("fibers_obj");

// Set the transformation matrix, the visible attribute, and the material
mi::Float64_4_4 matrix(1.0);

matrix.translate(0.0, -0.4, 0.9);

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

mi: :base::Handle<mi: :IRef> material(instance->create_attribute<mi::IRef>("material”, "Ref"));
material->set_reference("unicorn_hair");

transaction->store(instance.get(), "instance_fibers");

// Attach the instance to the root group

mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));

group->attach("instance_fibers");

}

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 225

20 Source code for examples 20.5 example_fibers.cpp

neuray->get_api_component<mi::neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add two triangle meshes to the scene
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 226

20 Source code for examples 20.5 example_fibers.cpp

// Write the image to disk

mi::base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi::neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_fibers.png", canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(arge '= 2) {
std::cerr << "Usage: example_fibers <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 227

20 Source code for examples

20.6 example_freeform_surface.cpp

20.6 example_freeform_surface.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include

#include
#include

#include

<mi/neuraylib.h>

"example_shared.h"
"example_render_target_simple.h"

<iostream>

mi::neuraylib::IFreeform_surface* create_sphere(
mi::neuraylib::ITransaction* transaction, mi::neuraylib::Basis_type basis)

{

const mi::Size n_points_u
const mi::Size n_points_v

// The control points
mi::Float32_3 control_points[n_points_u * n_points_v] = {

mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:

mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:

mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:

mi:
mi:
mi:

:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(

:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(

:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(

:Float32_3(
:Float32_3(
:Float32_3(

0

OO O OO OOOO

.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,

0.

OO O OO OOO

9;
5;

of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.0f, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.0f),
.of, -1.6f),
.of, -1.0f),
.of, -1.0f),
.of, -1.6f),
.of, -1.0f),
.of, -1.0f),
.of, -1.6f),
.of, @.ef),
.of, 0.ef),
.of, 0.ef),
.of, @.ef),
.of, 0.ef),
.of, 0.ef),
.0f, @.ef),
.of, 0.ef),
.of, 0.ef),
.of, 1.ef),
.of, 1.ef),
.of, 1.ef),

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

228

20 Source code for examples

20.6 example_freeform_surface.cpp

mi:
mi:
mi:
mi:
mi:
mi:

mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:
mi:

}s

:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(
:Float32_3(

:Float32_3(-1
:Float32_3(-1
:Float32_3(-1
:Float32_3(0.
:Float32_3(1
:Float32_3(1

OO O OO

.of,
.0f,
.of,

of,

.of,
.of,

.of,
.of,
.of,
.of,
.0f,
.of,
.of,
.of,
.of,

-1
-1

OO O OO

.of,
.of,
.of,
.of,
.of,
.of,

.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,
.of,

_— e A A A
©
—
S22

R S UK WU UK WU (UK K W ¥
— O N N N N

// Create an empty freeform surface with one surface
mi::neuraylib::IFreeform_surfacex sphere

= transaction->create<mi::neuraylib::IFreeform_surface>("Freeform_surface");
mi: :base::Handle<mi: :neuraylib::ISurface> surface(sphere->add_surface());

// There are two choices for the basis used to parameterize the freeform surface: bezier and
// b-spline. The other data depends on that choice, except for the control points which are
// identical (for this specific case).

if(basis == mi::neuraylib::BASIS_BEZIER) {

// Set up the basis type, degrees, and number of patches
surface->set_basis_type(mi::neuraylib::BASIS_BEZIER);
surface->set_degree(mi::neuraylib::DIMENSION_U, 2);
surface->set_degree(mi::neuraylib::DIMENSION_V, 2);
surface->set_patches_size(mi::neuraylib::DIMENSION_U,
surface->set_patches_size(mi::neuraylib::DIMENSION_V,

// Set up the parameter
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(
surface->set_parameter(

// The weights

mi:

_ N =R .

b

.of,
.of,
.of,
.of,
.of,

1.0f,
1.0f,
2.0f,
1.0f,
1.0f,

2.0f,
2.0f,
4.0f,
2.0f,
2.0f,

vectors

mi::
i::neuraylib::
i::neuraylib::
i::neuraylib::
i::neuraylib::
i::neuraylib::
i::neuraylib::
i::neuraylib::

neuraylib::

ef, 1.of,
ef, 1.of,
of, 2.of,
of, 1.0f,
ef, 1.of,

2.0f,
2.0f,
4.0f,
2.0f,
2.0f,

DIMENSION_U,
DIMENSION_U,
DIMENSION_U,
DIMENSION_U,
DIMENSION_U,
DIMENSION_V,
DIMENSION_V,
DIMENSION_V,

:Float32 weights[n_points_u * n_points_v] = {
1.0f, 1.
1.0f, 1.
2.0f, 2.
1.0f, 1.
1.0f, 1.

.of,
.of,
.of,
.of,
.of,

_ A N A
[G U G JE G

N 2 O~ WON-_O©

.of,
.of,
.of,
.of,
.of

- 0O 0O T 00O

.of);
.25f);
.5f);
.75f);
.of);
.of);
.5f);
.of);

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

229

20 Source code for examples 20.6 example_freeform_surface.cpp

// Set up the control points and weights
for(mi::Uint32 i = 0; i < n_points_u; ++1i)
for(mi::Uint32 j = 0; j < n_points_v; ++j) {

surface->set_control_point(i, j, control_points[j * n_points_u + i]);

surface->set_weight(i, j, weights[j * n_points_u + i]

}
} else {

// Set up the basis type, degrees, and number of patches
surface->set_basis_type(mi::neuraylib::BASIS_BSPLINE);
surface->set_degree(mi::neuraylib::DIMENSION_U, 2);
surface->set_degree(mi::neuraylib::DIMENSION_V, 2);
surface->set_patches_size(mi::neuraylib::DIMENSION_U, 7);
surface->set_patches_size(mi::neuraylib::DIMENSION_V, 3);

// Set up the parameter vectors

surface->set_parameter(mi::neuraylib::DIMENSION_U, ©, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 1, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 2, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 3, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 4, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 5, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 6, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 7, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 8, ©
surface->set_parameter(mi::neuraylib::DIMENSION_U, 9, 1
surface->set_parameter(mi::neuraylib::DIMENSION_U, 10, 1
surface->set_parameter(mi::neuraylib::DIMENSION_U, 11, 1
surface->set_parameter(mi::neuraylib::DIMENSION_V, ©, ©
surface->set_parameter(mi::neuraylib::DIMENSION_V, 1, ©
surface->set_parameter(mi::neuraylib::DIMENSION_V, 2, @
surface->set_parameter(mi::neuraylib::DIMENSION_V, 3, ©
surface->set_parameter(mi::neuraylib::DIMENSION_V, 4, ©
surface->set_parameter(mi::neuraylib::DIMENSION_V, 5, 1
surface->set_parameter(mi::neuraylib::DIMENSION_V, 6, 1
surface->set_parameter(mi::neuraylib::DIMENSION_V, 7, 1
// The weights
mi::Float32 w = 0.5f * std::sqrt(2.0f);
mi::Float32 weights[n_points_u * n_points_v] = {

1.0f, w, 1.0f, w, 1.0f, w, 1.0f, w, 1.0f,

w, 0.5f, w, 0.5f, w, 0.5f, w, 0.5f, w,
1.0f, w, 1.0f, w, 1.0f, w, 1.0f, w, 1.0f,
w, 0.5f, w, 0.5f, w, 0.5f, w, 0.5f, w,
1.0f, w, 1.0f, w, 1.0f, w, 1.0f, w, 1.0f

b

// Set up the control points and weights
for(mi::Uint32 i = 0; i < n_points_u; ++i)
for(mi::Uint32 j = 0; j < n_points_v; ++j) {

surface->set_control_point(i, j, control_points[j * n_points_u + i]);

surface->set_weight(i, j, weights[j * n_points_u + i]

);

.of);
.of);
.of);
.25F);
.25f);
.5f);
.5f);
.75F);
.75f);
.of);
.of);
.of);
.of);
.of);
.of);
.5f);
.5f);
.of);
.of);
.of);

)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual

230

20 Source code for examples 20.6 example_freeform_surface.cpp

surface = 0;

// Set up the approximation granularity
mi::base::Handle<mi: :IStructure> approx(

sphere->create_attribute<mi: :IStructure>("approx", "Approx"));
mi::base::Handle<mi: :ISint8> method(approx->get_value<mi::ISint8>("method"));
method->set_value(0);
method = 0;
mi: :base::Handle<mi: :IFloat32> const_u(approx->get_value<mi::IFloat32>("const_u"));
const_u->set_value(12.0f);
const_u = 0;
mi: :base::Handle<mi: :IFloat32> const_v(approx->get_value<mi::IFloat32>("const_v"));
const_v->set_value(12.0f);
const_v = 0;
approx = 0;

return sphere;

}

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)
{
// Create the red sphere
mi: :base::Handle<mi: :neuraylib::IFreeform_surface> mesh(
create_sphere(transaction, mi::neuraylib::BASIS_BEZIER));
transaction->store(mesh.get(), "mesh_red");

// Create the instance for the red sphere

mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

instance->attach("mesh_red");

// Set the transformation matrix, the visible attribute, and the material
mi::Float64_4_4 matrix(1.0);

matrix.translate(-06.6, -0.5, 0.7);

mi::Float64_4_4 matrix_scale(2.0, 0, 0, 6, 0, 2.0, 0, 0, 6, ©, 2.0, @, 0, 0, 0, 1.0);
matrix *= matrix_scale;

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

mi::base::Handle<mi: :IRef> material(instance->create_attribute<mi::IRef>("material", "Ref"));
material->set_reference("red_material");

transaction->store(instance.get(), "instance_red");

// And attach the instance to the root group

mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));

group->attach("instance_red");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 231

20 Source code for examples 20.6 example_freeform_surface.cpp

group = 0;

// Create the blue sphere
mesh = create_sphere(transaction, mi::neuraylib::BASIS_BSPLINE);

// Trim the sphere to the part above the ground plane

mi: :base::Handle<mi: :neuraylib::ISurface> surface(
mesh->edit_surface(mi::neuraylib::Surface_handle(0)));

surface->set_range(mi::neuraylib::DIMENSION_U, @.0f, 0.5f);

surface = 0;

transaction->store(mesh.get(), "mesh_blue");

// Create the instance for the blue sphere
instance = transaction->create<mi::neuraylib::IInstance>("Instance");
instance->attach("mesh_blue");

// Set the transformation matrix, the visible attribute, and the material

matrix = mi::Float64_4_4(1.9);

matrix.translate(-0.6, 0.0, -1.1);

matrix_scale = mi::Float64_4_4(2.0, 0, 0, 0, 06, 1.0, 0, 0, 0, 0, 2.0, ©, @, @, 0, 1.0);
matrix *= matrix_scale;

instance->set_matrix(matrix);

visible = instance->create_attribute<mi::IBoolean>("visible", "Boolean");
visible->set_value(true);

material = instance->create_attribute<mi::IRef>("material", "Ref");
material->set_reference("blue_material");

transaction->store(instance.get(), "instance_blue");

// And attach the instance to the root group
group = transaction->edit<mi: :neuraylib::IGroup>(rootgroup);
group->attach("instance_blue");

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImagelO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi::neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == @);
}

void rendering(mi::neuraylib::INeuray* neuray)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 232

20 Source code for examples 20.6 example_freeform_surface.cpp

{

// Get the database, the global scope of the database, and create a transaction in the global

// scope for importing the scene file and storing the scene.

mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

check_success(database.is_valid_interface());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add two instances of freeform surfaces
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

scene = 0;

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi::neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 233

20 Source code for examples

20.6 example_freeform_surface.cpp

}

export_api->export_canvas("file:example_freeform_surface.png", canvas.get());

transaction->commit();

int main(int argc, char* argv[])

{

// Collect command line parameters
if(argc '= 2) {

std::cerr << "Usage: example_freeform_surface <mdl_path>" << std::endl;

keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library

mi: :base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());

check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

234

20 Source code for examples 20.7 example_http_server.cpp

20.7 example_http_server.cpp

/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.

kkkkkkhhkkhhhkhhhkhhhkhhhhhhhkhhkhhhkdhhkhhhhhhhkhhhhhhkhhhkhhhkdhkhhhkkhhhkkdhkkr/

#include <iostream>
#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

class Request_handler : public mi::base::Interface_implement<mi::http::IRequest_handler>
{
public:
// Constructor. Stores the passed buffer.
Request_handler(mi::neuraylib::IBuffer* buffer)
: m_buffer(buffer, mi::base::DUP_INTERFACE) { }

// Send buffer contents over the connection.
bool handle(mi::http::IConnection* connection)
{
connection->enqueue(m_buffer.get());
return true;
}
private:
// The stored buffer
mi::base::Handle<mi: :neuraylib: :IBuffer> m_buffer;

|3

class Response_handler : public mi::base::Interface_implement<mi::http::IResponse_handler>
{
public:
void handle(mi::http::IConnection* connection)
{
mi::http::IResponse* iresponse(connection->get_response());
iresponse->set_header("Content-Type", "image/jpeg");
}
3

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == 0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 235

20 Source code for examples 20.7 example_http_server.cpp

check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

mi::base::Handle<mi::neuraylib::IBuffer> rendering(
mi::neuraylib::INeuray* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi::neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Access the first canvas of the render target
mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 236

20 Source code for examples 20.7 example_http_server.cpp

// Convert content of the canvas to a JPG image
mi: :base::Handle<mi: :neuraylib: :IBuffer> buffer(
image_api->create_buffer_from_canvas(canvas.get(), "jpg", "Rgb"));

transaction->commit();

return buffer;

}

void run_http_server(
mi::neuraylib::INeuray* neuray, mi::neuraylib::IBuffer* buffer, const charx port)
{
// Create a server instance
mi::base::Handle<mi::http::IFactory> http_factory(
neuray->get_api_component<mi: :http::IFactory>());
mi::base::Handle<mi: :http::IServer> http_server(
http_factory->create_server());

// Install our request and response handlers

mi::base::Handle<mi: :http::IRequest_handler> request_handler(new Request_handler(buffer));
http_server->install(request_handler.get());

mi: :base::Handle<mi: :http::IResponse_handler> response_handler(new Response_handler());
http_server->install(response_handler.get());

// Assemble server address
std::string address = "0.0.0.0:";
address += port;

// Run server for fixed time interval
http_server->start(address.c_str());
sleep_seconds(30);
http_server->shutdown();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(arge '= 4) {
std::cerr << "Usage: example_http_server <scene_file> <mdl_path> <port>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const charx scene_file = argv[1];
const char* mdl_path = argv[2];
const charx port = argv[3];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 237

20 Source code for examples 20.7 example_http_server.cpp

mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
mi: :base::Handle<mi: :neuraylib: :IBuffer> buffer = rendering(neuray.get(), scene_file);

// Serve image via HTTP server on given port
run_http_server(neuray.get(), buffer.get(), port);
buffer = 0;

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 238

20 Source code for examples 20.8 example_importer.cpp

20.8 example_importer.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <iostream>

#include "example_shared.h"

#include "vanilla_importer.h"

mi::base::Handle<mi: :neuraylib::IImporter> importer;

void configuration(mi::neuraylib::INeuray* neuray)
{
// Register the Vanilla importer.
mi::base::Handle<mi: :neuraylib::IExtension_api> extension_api(
neuray->get_api_component<mi: :neuraylib::IExtension_api>());
check_success(extension_api.is_valid_interface());
mi::base::Handle<mi::neuraylib::IPlugin_api> plugin_api(
neuray->get_api_component<mi: :neuraylib::IPlugin_api>());
check_success(plugin_api.is_valid_interface());
importer = new Vanilla_importer(plugin_api.get());

check_success(extension_api->register_importer(importer.get()) == 0);

}

void test_importer(mi::neuraylib::INeuray* neuray)

{
// Get the database, the global scope of the database, and create a transaction in the global
// scope.

mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

check_success(database.is_valid_interface());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());

mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

// Prepare the importer options:

// We do not want to have an additional prefix, but a list of all imported elements.
mi::base::Handle<mi: :IBoolean> list_elements(transaction->create<mi::IBoolean>("Boolean"));
list_elements->set_value(true);

mi: :base::Handle<mi: :IMap> importer_options(transaction->create<mi::IMap>("Map<Interface>"));
importer_options->insert("list_elements"”, list_elements.get());

// Import the file testl1.vnl (implicitly using the Vanilla importer).
mi: :base::Handle<mi: :neuraylib::IImport_api> import_api(

neuray->get_api_component<mi: :neuraylib::IImport_api>());
check_success(import_api.is_valid_interface());
mi::base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:test1.vnl", importer_options.get()));
check_success(import_result.is_valid_interface());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 239

20 Source code for examples 20.8 example_importer.cpp

// Print all messages
for(mi::Size i = @; i < import_result->get_messages_length(); ++i)
std::cout << import_result->get_message(i) << std::endl;

// Print all imported elements
for(mi::Size i = @; i < import_result->get_elements_length(); ++i)
std::cout << import_result->get_element(i) << std::endl;

transaction->commit();

}

int main(int /*argc*/, char /*argv+/[])

{
// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get());

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Test the Vanilla importer
test_importer(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);

// Unregister the Vanilla importer.

mi::base::Handle<mi: :neuraylib::IExtension_api> extension_api(
neuray->get_api_component<mi: :neuraylib::IExtension_api>());

check_success(extension_api->unregister_importer(importer.get()) == 0);

importer = 0;

extension_api = 9;

neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 240

20 Source code for examples 20.9 example_mdl.cpp

20.9 example_mdl.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

*

Copyright 2024 NVIDIA Corporation. All rights reserved.

kkkkkkhhkkhhhhhhhkhhhkhhhhhhhhhhkhhhhdhhhhhhhhhkhhhkhhkhhhkhhhkhhkhhhkkhhkkdhkkk/

#include <iostream>

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)

{

}

// Configure the neuray library. Here we set the search path for .mdl files.

mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());

check_success(rc->add_mdl_path(mdl_path) == 0);

check_success(rc->add_mdl_path(".") == 0);

check_success(rc->add_resource_path(".") == 0);

// Load the OpenImagelO, Iray Photoreal, .mi importer, and MDL distiller plugins.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("mdl_distiller" MI_BASE_DLL_FILE_EXT) == 0);

void render_and_export(

{

mi::neuraylib::INeuray* neuray,
mi::neuraylib::ITransaction* transaction,
const char* uri)

// Create the render context using the Iray Photoreal render mode.

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->edit<mi::neuraylib::IScene>("the_scene"));

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction, "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene.

mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());

mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));

check_success(render_context->render(transaction, render_target.get(), 0) >= 0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 241

20 Source code for examples 20.9 example_mdl.cpp

// Write the image to disk.

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas(uri, canvas.get());

void import_and_render_original_scene(
mi::neuraylib::INeuray* neuray, mi::neuraylib::IScope* scope)
{
// Create a transaction for importing the scene file and storing the scene.
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file.

mi: :base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Create the scene object.

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi::neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

render_and_export(neuray, transaction.get(), "file:example_mdl_original.png");
transaction->commit();

void modify_material_instance(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1_factory* mdl_factory)

// Create a transaction and MDL expression factory.

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

mi::base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
md1l_factory->create_expression_factory(transaction.get()));

// Create a new argument for the "tint" parameter and set it to bright grey.

mi::base::Handle<mi: :neuraylib::IFunction_call> yellow_material(
transaction->edit<mi::neuraylib::IFunction_call>("yellow_material"));

mi::base::Handle<const mi: :neuraylib::IExpression_list> arguments(
yellow_material->get_arguments());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 242

20 Source code for examples 20.9 example_mdl.cpp

mi: :base::Handle<const mi::neuraylib::IExpression> argument(
arguments->get_expression("tint"));

mi::base::Handle<mi: :neuraylib: :IExpression> new_argument(
expression_factory->clone(argument.get()));

mi: :base::Handle<mi: :neuraylib::IExpression_constant> new_argument_constant(
new_argument->get_interface<mi: :neuraylib::IExpression_constant>());

mi::base::Handle<mi: :neuraylib::IValue> new_value(new_argument_constant->get_value());
mi::math::Color bright_grey(0.7f, 0.7f, 0.7f);
mi::neuraylib::set_value(new_value.get(), bright_grey);

// Set the new argument for the "tint" parameter of "yellow_material".

check_success(yellow_material->set_argument("tint", new_argument.get()) == 0);
}
// The same effect as in the preceding code block can alternatively be achieved by using the
// helper class Argument_editor as follows:
{

// Set the "tint" argument of "yellow_material” to bright grey.

mi::neuraylib::Argument_editor yellow_material(

transaction.get(), "yellow_material", mdl_factory);
mi::math::Color bright_grey(0.7f, 0.7f, 0.7f);
check_success(yellow_material.set_value("tint", bright_grey) == 0);

}

render_and_export(
neuray, transaction.get(), "file:example_mdl_modified_material_argument.png");
transaction->commit();

}

void create_new_material_instance(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1_factory* mdl_factory)

// Create a transaction, MDL value and expression factory.

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
mdl_factory->create_value_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction.get()));

{
// Prepare the arguments for the new material instance: set the "tint" argument to white.
mi::base::Handle<mi: :neuraylib::IValue> value(
value_factory->create_color(1.0f, 1.06f, 1.0f));
mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_constant(value.get()));
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());
arguments->add_expression("tint", expression.get());

// Create a material instance of the definition "mdl::main::diffuse_material” with the just

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 243

20 Source code for examples 20.9 example_mdl.cpp

// prepared arguments.

mi: :base::Handle<const mi::neuraylib::IFunction_definition> material_definition(
transaction->access<mi: :neuraylib::IFunction_definition>(

"mdl::main::diffuse_material(color)"));

mi::Sint32 result;

mi::base::Handle<mi: :neuraylib::IFunction_call> material_instance(
material_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(material_instance.get(), "white_material");

// Attach the newly created material instance to the scene element "cube_instance", thereby
// replacing the existing material instance "yellow_material".
mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->edit<mi::neuraylib::IInstance>("cube_instance"));
mi::base::Handle<mi: :IArray> material(instance->edit_attribute<mi: :IArray>("material”));
check_success(
mi::set_value(material.get(), static_cast<mi::Size>(@), "white_material") ==0);

}

render_and_export(neuray, transaction.get(), "file:example_mdl_new_material_instance.png");
transaction->commit();

}

void attach_function_call(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1_factory* mdl_factory)

// Create a transaction, MDL value and expression factory.

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
md1l_factory->create_value_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib::IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction.get()));

{
// Create a DB element for the image and the texture referencing it.
mi::base::Handle<mi: :neuraylib::IImage> image(

transaction->create<mi: :neuraylib::IImage>("Image"));
check_success(image->reset_file("nvidia_logo.png") ==
transaction->store(image.get(), "nvidia_image");
mi::base::Handle<mi: :neuraylib::ITexture> texture(
transaction->create<mi: :neuraylib::ITexture>("Texture"));

texture->set_image("nvidia_image");

// Setting the gamma override value here is not strictly necessary, since the canvas of
// the image has already a gamma value of 2.2. However, if new MDL source code is

// generated based on this texture, the explicit setting here causes "::tex::gamma_srgb" to
// be used instead of "::tex::gamma_default", which might be desired.
texture->set_gamma(2.2f);
transaction->store(texture.get(), "nvidia_texture");

}

{
// Import the "base.mdl" module.

0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 244

20 Source code for examples 20.9 example_mdl.cpp

mi::base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());
mi::base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "S${shader}/base.mdl"));
check_success(import_result->get_error_number() == 0);
}
{
// Lookup the exact name of the DB element for the MDL function "base::file_texture".
mi: :base::Handle<const mi::neuraylib::IModule> module(
transaction->access<mi: :neuraylib::IModule>("mdl::base"));
mi: :base::Handle<const mi::IArray> overloads(
module->get_function_overloads("mdl::base::file_texture"));
check_success(overloads->get_length() == 1);
mi::base::Handle<const mi::IString> file_texture_name(
overloads->get_element<mi: :IString>(static_cast<mi::Uint32>(0)));

// Prepare the arguments of the function call for "mdl::base::file_texture": set the

// "texture" argument to the "nvidia_texture" texture.

mi: :base::Handle<const mi::neuraylib::IFunction_definition> function_definition(
transaction->access<mi: :neuraylib::IFunction_definition>(

file_texture_name->get_c_str()));

mi::base::Handle<const mi::neuraylib::IType_list> types(
function_definition->get_parameter_types());

mi: :base::Handle<const mi::neuraylib::IType> type(
types->get_type("texture"));

mi::base::Handle<mi: :neuraylib::IValue> value(
value_factory->create(type.get()));

check_success(mi::neuraylib::set_value(value.get(), "nvidia_texture") == 8);

mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_constant(value.get()));

mi: :base::Handle<mi: :neuraylib: :IExpression_list> arguments(
expression_factory->create_expression_list());

arguments->add_expression("texture", expression.get());

// Create a function call from the definition "mdl::base::file_texture" with the just
// prepared arguments.
mi::Sint32 result;
mi: :base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));
check_success(result == 0);
function_definition = 9;
transaction->store(function_call.get(), "file_texture_call");
}
{
// Prepare the arguments of the function call for "mdl: :base::texture_return.tint": set the
// "s" argument to the "file_texture_call" function call.
mi::base::Handle<mi: :neuraylib::IExpression> expression(
expression_factory->create_call("file_texture_call"));
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());
arguments->add_expression("s", expression.get());

// Create a function call from the definition "mdl::base::file_texture.tint” with the just
// prepared arguments.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 245

20 Source code for examples 20.9 example_mdl.cpp

mi: :base: :Handle<const mi::neuraylib::IFunction_definition> function_definition(

transaction->access<mi: :neuraylib::IFunction_definition>(
"mdl::base: :texture_return.tint(::base::texture_return)"));

mi::Sint32 result;

mi: :base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(function_call.get(), "texture_return.tint_call");

// Create a new expression for the "tint" argument and set it to the

// "texture_return.tint_call" function call.

mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_call("texture_return.tint_call"));

// Set the new argument for the "tint" parameter of "grey_material".
mi: :base::Handle<mi: :neuraylib::IFunction_call> grey_material(
transaction->edit<mi::neuraylib::IFunction_call>("grey_material"));
check_success(grey_material->set_argument("tint", expression.get()) == 0);
}
// The same effect as in the preceding code block can alternatively be achieved by using the
// helper class Mdl_argument_editor as follows:

{
// Attach "texture_return.tint_call” to the "tint" argument of "grey_material".
mi::neuraylib::Argument_editor grey_material(
transaction.get(), "grey_material"”, mdl_factory);
check_success(grey_material.set_call("tint", "texture_return.tint_call") == 0);
}

render_and_export(neuray, transaction.get(), "file:example_mdl_attached_function_call.png");
transaction->commit();

}

void use_struct_and_array_constructors(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1l_factory* mdl_factory)

// Create a transaction, MDL value and expression factory.

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::IType_factory> type_factory(
mdl_factory->create_type_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
mdl_factory->create_value_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib::IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction.get()));

{
// Create a first color "color_layer®" layer using "texture_return.tint_call" and
// "color_layer_brightness" as mode.

// Set the "layer_color" argument to "texture_return.tint_call".

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 246

20 Source code for examples 20.9 example_mdl.cpp

mi::base::Handle<mi: :neuraylib::IExpression_call> expression_layer_color(
expression_factory->create_call("texture_return.tint_call"));

// Set the "mode" argument to "color_layer_brightness".
mi::base::Handle<const mi::neuraylib::IType_enum> type_mode(

type_factory->create_enum("::base::color_layer_mode"));
mi::Size index = type_mode->find_value("color_layer_brightness");
check_success(index != static_cast<mi::Size>(-1));

mi::base::Handle<mi: :neuraylib::IValue> value_mode(
value_factory->create_enum(type_mode.get(), index));

mi::base::Handle<mi: :neuraylib::IExpression> expression_mode(
expression_factory->create_constant(value_mode.get()));

// Create the arguments list with both arguments above.
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());
arguments->add_expression("layer_color", expression_layer_color.get());
arguments->add_expression("mode", expression_mode.get());

// Create a function call of the struct constructor for "mdl::base::color_layer" with

// the just prepared arguments and store it as "color_layer0".

mi: :base::Handle<const mi::neuraylib::IFunction_definition> function_definition(
transaction->access<mi: :neuraylib::IFunction_definition>(

"mdl::base::color_layer(color, float, : :base::color_layer_mode)"));

mi::Sint32 result;

mi::base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(function_call.get(), "color_layer9");

// Create a second color layer "color_layer1" with "layer_color" set to blue and
// "color_layer_average" as mode. Store it as "color_layer1".

// Set the "layer_color" argument to blue.

mi::base::Handle<mi: :neuraylib::IValue> value_layer_color(
value_factory->create_color(©0.0f, 0.ef, 1.0f));

mi::base::Handle<mi: :neuraylib: :IExpression_constant> expression_layer_color(
expression_factory->create_constant(value_layer_color.get()));

// Set the "mode" argument to "color_layer_average".
mi::base::Handle<const mi::neuraylib::IType_enum> type_mode(

type_factory->create_enum("::base::color_layer_mode"));
mi::Size index = type_mode->find_value("color_layer_average");
check_success(index != static_cast<mi::Size>(-1));

mi: :base::Handle<mi: :neuraylib::IValue> value_mode(
value_factory->create_enum(type_mode.get(), index));

mi::base::Handle<mi: :neuraylib::IExpression> expression_mode(
expression_factory->create_constant(value_mode.get()));

// Create the arguments list with both arguments above.

mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());

arguments->add_expression("layer_color", expression_layer_color.get());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 247

20 Source code for examples 20.9 example_mdl.cpp

arguments->add_expression("mode", expression_mode.get());

// Create a function call of the struct constructor for "mdl::base::color_layer" with
// the just prepared arguments and store it as "color_layer1".
mi: :base::Handle<const mi::neuraylib::IFunction_definition> function_definition(
transaction->access<mi: :neuraylib::IFunction_definition>(
"mdl: :base::color_layer(color, float, : :base::color_layer_mode)"));
mi::Sint32 result;
mi::base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));
check_success(result == 0);
transaction->store(function_call.get(), "color_layer1");
}
{
// Create an array of the two color layers "color_layer@" and "color_layer1" using the array
// constructor. Store it as "color_layers".

// Create the argument list with both arguments "color_layer®" and "color_layer1".

mi::base::Handle<mi: :neuraylib::IExpression> expression_color_layero(
expression_factory->create_call("color_layer8"));

mi: :base::Handle<mi: :neuraylib: :IExpression> expression_color_layer1(
expression_factory->create_call("color_layer1"));

mi::base::Handle<mi: :neuraylib: :IExpression_list> arguments(
expression_factory->create_expression_list());

arguments->add_expression("value®", expression_color_layer®.get());

arguments->add_expression("valuel", expression_color_layer1.get());

// Create a function call of the array constructor with the just prepared arguments and

// store it as "color_layers".

mi: :base::Handle<const mi: :neuraylib::IFunction_definition> function_definition(
transaction->access<mi::neuraylib::IFunction_definition>("mdl::T[](...)"));

mi::Sint32 result;

mi::base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(function_call.get(), "color_layers");

// Create a blend of the two color layers and red as base color. Store it as
// "blended_color_layers".

// Set the "layers" argument to "color_layers".
mi::base::Handle<mi: :neuraylib: :IExpression> expression_layers(
expression_factory->create_call("color_layers"));

// Set the "base" argument to red.

mi::base::Handle<mi: :neuraylib::IValue> value_base(
value_factory->create_color(1.6f, 0.ef, 0.6f));

mi::base::Handle<mi: :neuraylib::IExpression> expression_base(
expression_factory->create_constant(value_base.get()));

// Create the argument list with both arguments above.
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 248

20 Source code for examples 20.9 example_mdl.cpp

arguments->add_expression("layers", expression_layers.get());
arguments->add_expression("base", expression_base.get());

// Create a function call from the definition "mdl::base::blend_color_layers" with the just

// prepared arguments and store it as "blended_color_layers".

mi: :base::Handle<const mi::neuraylib::IFunction_definition> function_definition(
transaction->access<mi: :neuraylib::IFunction_definition>(
"mdl::base::blend_color_layers(::base::color_layer[P],color, ::base::mono_mode)"));

mi: :Sint32 result;

mi::base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(function_call.get(), "blended_color_layers");

}
{

// Prepare the arguments of the function call for "mdl::base::texture_return.tint": set the
// "s" argument to the "file_texture_call" function call.
mi::base::Handle<mi: :neuraylib: :IExpression> expression(

expression_factory->create_call("blended_color_layers"));
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(

expression_factory->create_expression_list());
arguments->add_expression("s", expression.get());

// Create a function call from the definition "mdl::base::file_texture.tint"” with the just

// prepared arguments and store it as "texture_return.tint_call2".

mi: :base::Handle<const mi::neuraylib::IFunction_definition> function_definition(
transaction->access<mi: :neuraylib: :IFunction_definition>(

"mdl::base: :texture_return.tint(::base::texture_return)"));

mi: :Sint32 result;

mi: :base::Handle<mi: :neuraylib::IFunction_call> function_call(
function_definition->create_function_call(arguments.get(), &result));

check_success(result == 0);

transaction->store(function_call.get(), "texture_return.tint_call2");

}
{
// Attach "texture_return.tint_call2" to the "tint" argument of "grey_material".
mi::neuraylib::Argument_editor grey_material(
transaction.get(), "grey_material"”, mdl_factory);
check_success(grey_material.set_call("tint", "texture_return.tint_call2") == 0);
}

render_and_export(
neuray, transaction.get(), "file:example_mdl_struct_and_array_constructors.png");
transaction->commit();

}

void create_variant(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1_factory* mdl_factory)

// Create a transaction, MDL value and expression factory.
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 249

20 Source code for examples 20.9 example_mdl.cpp

check_success(transaction.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
mdl_factory->create_value_factory(transaction.get()));
mi: :base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction.get()));
{
// Prepare new defaults as clone of the current arguments of "grey_material”.
mi::base::Handle<const mi::neuraylib::IFunction_call> grey_material(
transaction->access<mi: :neuraylib::IFunction_call>("grey_material"));
mi::base::Handle<const mi: :neuraylib::IExpression_list> arguments(
grey_material->get_arguments());
mi::base::Handle<mi: :neuraylib: :IExpression_list> defaults(
expression_factory->clone(arguments.get()));

// Create an ::anno::description annotation.

mi::base::Handle<mi: :neuraylib::IValue> anno_arg_value(

value_factory->create_string("a textured variant of ::main::diffuse_material"));

mi::base::Handle<mi: :neuraylib: :IExpression> anno_arg_expression(
expression_factory->create_constant(anno_arg_value.get()));

mi::base::Handle<mi: :neuraylib::IExpression_list> anno_args(
expression_factory->create_expression_list());

anno_args->add_expression("description"”, anno_arg_expression.get());

mi::base::Handle<mi: :neuraylib::IAnnotation> anno(

expression_factory->create_annotation("::anno::description(string)", anno_args.get()));

mi: :base::Handle<mi: :neuraylib::IAnnotation_block> anno_block(
expression_factory->create_annotation_block());

anno_block->add_annotation(anno.get());

// Create the module bulder.
mi::base::Handle<mi: :neuraylib::IMdl_execution_context> context(
mdl_factory->create_execution_context());
mi::base::Handle<mi: :neuraylib::IMdl_module_builder> module_builder (
mdl_factory->create_module_builder(
transaction.get(),
"mdl::variants”,
mi::neuraylib::MDL_VERSION_1_0,
mi::neuraylib: :MDL_VERSION_LATEST,
context.get()));
check_success(module_builder);

// Create the variant.
check_success(module_builder->add_variant(
"textured_material",
"mdl::main::diffuse_material(color)”,
defaults.get(),
anno_block.get(),
/*return_annotations*/ 0,
/*is_exported*/ true,
/*is_declarativex/ true,
context.get()) == 0);
}
{
// Instantiate the variant.
mi: :base::Handle<const mi::neuraylib::IFunction_definition> textured_material_def(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 250

20 Source code for examples 20.9 example_mdl.cpp

transaction->access<mi: :neuraylib::IFunction_definition>(
"mdl::variants::textured_material(color)"));
mi::Sint32 result = 0;
mi::base::Handle<mi: :neuraylib::IFunction_call> textured_material(
textured_material_def->create_function_call(0, &result));
check_success(result == 0);
transaction->store(textured_material.get(), "textured_material");

// Attach the instantiated variant to the scene element "ground_instance", thereby
// replacing the existing material instance "grey_material" it was created from.
mi: :base::Handle<mi: :neuraylib::IInstance> instance(
transaction->edit<mi::neuraylib::IInstance>("ground_instance"));
mi::base::Handle<mi: :IArray> material(instance->edit_attribute<mi: :IArray>("material"));
check_success(
mi::set_value(material.get(), static_cast<mi::Size>(8), "textured_material") ==0);
}
{
// Export the variant.
mi::base::Handle<mi: :IArray> elements(transaction->create<mi::IArray>("String[1]"));
mi::base::Handle<mi: :IString> element(
elements->get_element<mi: :IString>(static_cast<mi::Size>(0)));
element->set_c_str("mdl::variants");
mi::base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi::neuraylib::IExport_api>());
mi: :base::Handle<const mi::neuraylib::IExport_result> export_result(
export_api->export_elements(transaction.get(), "file:variants.mdl", elements.get()));

render_and_export(neuray, transaction.get(), "file:example_mdl_variant.png");
transaction->commit();

}

void distill(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IScope* scope,
mi::neuraylib::IMd1_factory* mdl_factory)

// Create a transaction, MDL value, type and expression factory.

mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

mi::base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
mdl_factory->create_value_factory(transaction.get()));

mi: :base::Handle<mi: :neuraylib::IType_factory> type_factory(

mdl_factory->create_type_factory(transaction.get()));

{
// Access and compile material instance
mi::base::Handle<const mi::neuraylib::IMaterial_instance> grey_material(
transaction->access<mi: :neuraylib::IMaterial_instance>("grey_material"));
check_success(grey_material.is_valid_interface());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 251

20 Source code for examples 20.9 example_mdl.cpp

mi::Uint32 flags = mi::neuraylib::IMaterial_instance: :DEFAULT_OPTIONS;

mi::base::Handle<const mi::neuraylib::ICompiled_material> comiled_material(
grey_material->create_compiled_material(flags));

check_success(comiled_material.is_valid_interface());

// Use Distiller API to distill material to diffuse target

mi::base::Handle<mi: :neuraylib::IMdl_distiller_api> distiller_api(
neuray->get_api_component<mi: :neuraylib::IMdl_distiller_api>());

check_success(distiller_api.is_valid_interface());

mi::base::Handle<const mi::neuraylib::ICompiled_material> distilled_material(
distiller_api->distill_material(comiled_material.get(), "diffuse"));
check_success(distilled_material.is_valid_interface());

// Bake a path from the distilled material and apply the
// baking result to another material instance

mi: :base::Handle<const mi::neuraylib::IBaker> baker(distiller_api->create_baker(
distilled_material.get(),
"surface.scattering.tint"));

check_success(baker.is_valid_interface());

// Setup target material arguments
mi::base::Handle<mi: :neuraylib::IExpression_list> target_material_arguments(
expression_factory->create_expression_list());

mi: :base::Handle<mi: :neuraylib::IValue_bool> use_tex(
value_factory->create_bool(!baker->is_uniform()));

mi::base::Handle<mi: :neuraylib::IExpression_constant> use_tex_expr(
expression_factory->create_constant(use_tex.get()));

target_material_arguments->add_expression("tint_use_texture", use_tex_expr.get());

// Bake the path
if (baker->is_uniform())
{
// Bake constant
mi::base::Handle<mi: :IColor> constant_color(
transaction->create<mi: :IColor>());
check_success(baker->bake_constant(constant_color.get()) == 0);

// Setup color argument for target material

mi::Color c(@.0f, @.ef, @.0f);

mi::get_value(constant_color.get(), c);

mi::base::Handle<mi: :neuraylib::IValue_color> color(
value_factory->create_color(c.r, c.g, c.b));

mi::base::Handle<mi: :neuraylib: :IExpression_constant> color_expr(
expression_factory->create_constant(color.get()));

target_material_arguments->add_expression("tint_color", color_expr.get());

}

else

{

// Create a canvas for storing the baked texture

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 252

20 Source code for examples 20.9 example_mdl.cpp

mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
check_success(image_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(
image_api->create_canvas("Rgb_fp", 1024, 1024));
check_success(canvas.is_valid_interface());

// Bake the texture
check_success(baker->bake_texture(canvas.get(), 4) == 0);

// Write the image to disk (for illustration purposes)
mi::base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi::neuraylib::IExport_api>());
check_success(export_api.is_valid_interface());
export_api->export_canvas("file:bake_result.png", canvas.get());

// Store the baked texture into a database texture
mi::base::Handle<mi: :neuraylib::IImage> image(
transaction->create<mi: :neuraylib::IImage>("Image"));
check_success(image->set_from_canvas(canvas.get()));
transaction->store(image.get(), "baked_image");
mi::base::Handle<mi: :neuraylib::ITexture> texture(
transaction->create<mi: :neuraylib::ITexture>("Texture"));
texture->set_image("baked_image");
transaction->store(texture.get(), "baked_texture");

// Setup texture argument for target material

mi::base::Handle<const mi::neuraylib::IType_texture> tex_type(
type_factory->create_texture(mi: :neuraylib: :IType_texture::TS_2D));

mi::base::Handle<mi: :neuraylib::IValue_texture> tex(
value_factory->create_texture(tex_type.get(), "baked_texture"));

mi::base::Handle<mi: :neuraylib::IExpression_constant> tex_ref(
expression_factory->create_constant(tex.get()));

target_material_arguments->add_expression("tint_texture", tex_ref.get());

// Create target material instance

mi::neuraylib: :Definition_wrapper target_material_def(
transaction.get()
"mdl::main: :textured_diffuse_material(texture_2d,bool,color)",
mdl_factory);

check_success(target_material_def.is_valid());

mi::base::Handle<mi: :neuraylib::IScene_element> target_material(
target_material_def.create_instance(target_material_arguments.get()));
transaction->store(target_material.get(), "target_material");

// Attach the newly created material instance to the scene element "cube_instance"
mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->edit<mi::neuraylib::IInstance>("cube_instance"));
mi::base::Handle<mi: :IArray> material(instance->edit_attribute<mi: :IArray>("material"));
check_success(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 253

20 Source code for examples 20.9 example_mdl.cpp

mi::set_value(material.get(), static_cast<mi::Size>(@), "target_material") ==0);

}

render_and_export(neuray, transaction.get(), "file:example_mdl_distilling.png");
transaction->commit();

}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database and the global scope of the database.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());

// Import the scene and render it.
import_and_render_original_scene(neuray, scope.get());

// Perform various MDL-related modifications, render the scene, and export the image to disk.
mi::base::Handle<mi: :neuraylib::IMd1_factory> mdl_factory(
neuray->get_api_component<mi: :neuraylib::IMd1l_factory>());

modify_material_instance(neuray, scope.get(), mdl_factory.get());
create_new_material_instance(neuray, scope.get(), mdl_factory.get());
attach_function_call(neuray, scope.get(), mdl_factory.get());
use_struct_and_array_constructors(neuray, scope.get(), mdl_factory.get());
create_variant(neuray, scope.get(), mdl_factory.get());
distill(neuray, scope.get(), mdl_factory.get());

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(arge '= 2) {
std::cerr << "Usage: example_mdl <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi::neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 254

20 Source code for examples 20.9 example_mdl.cpp

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 255

20 Source code for examples 20.10 example_networking.cpp

20.10 example_networking.cpp

/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.

***/
#include <iostream>

#include <mi/neuraylib.h>

#include "example_shared.h"

class Host_callback : public mi::base::Interface_implement<mi::neuraylib::IHost_callback>

{
public:
void connection_callback(mi::Uint32 host_id, bool flag)
{
if(flag) {
fprintf(stderr,
"The connection to the cluster was established. Own host id is %u.\n", host_id);
m_own_host_id = host_id;
}
else
fprintf(stderr, "The connection to the cluster was lost.\n");
}
void membership_callback(mi::Uint32 host_id, bool flag)
{
if(flag)
fprintf(stderr, "Host %u joined the cluster.\n", host_id);
else
fprintf(stderr, "Host %u left the cluster.\n", host_id);
}
void property_callback(mi::Uint32 host_id, const mi: :neuraylib::IHost_properties* properties)
{

fprintf(stderr, "Host %u communicated its properties:\n", host_id);
mi: :base::Handle<const mi: :IString> value(properties->get_property("application_name"));
if(value.is_valid_interface())
fprintf(stderr, " application_name: %s\n", value->get_c_str());
}
void synchronizer_callback(mi::Uint32 host_id)
{
fprintf(stderr, "The synchronizer is now host %u", host_id);
if(m_own_host_id == host_id)
fprintf(stderr, " (this host)");
fprintf(stderr, ".\n");

}
void database_status_callback(const char* status)
{
fprintf(stderr, "The database reports its status as \"%s\".\n", status);
}
private:
mi: :Uint32 m_own_host_id;

+s

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 256

20 Source code for examples 20.10 example_networking.cpp

void configuration(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::IHost_callback* host_callback,
int argc,
char* argv[])

mi: :base::Handle<mi: :neuraylib::INetwork_configuration> network_configuration(
neuray->get_api_component<mi: :neuraylib::INetwork_configuration>());

// Register the callback handler
network_configuration->register_host_callback(host_callback);

// Set networking mode
const char* mode = argv([1];
if(strcmp(mode, ".") == 0) {
} else if(strcmp(mode, "OFF") == 8) {
check_success(network_configuration->set_mode(
mi::neuraylib::INetwork_configuration::MODE_OFF) == 0);
} else if(strcmp(mode, "TCP") == 8) {
check_success(network_configuration->set_mode(
mi::neuraylib::INetwork_configuration::MODE_TCP) == 0);
} else if(strcmp(mode, "UDP") == 0) {
check_success(network_configuration->set_mode(
mi::neuraylib::INetwork_configuration: :MODE_UDP) =
} else if(strcmp(mode, "TCP_WITH_DISCOVERY") == 0) {
check_success(network_configuration->set_mode(
mi::neuraylib::INetwork_configuration: :MODE_TCP_WITH_DISCOVERY) == 0);
} else {
check_success(false);

=9);

// Set the multicast address
if(stremp(argv[2], ".") !'= 0)
check_success(network_configuration->set_multicast_address(argv[2]) == 0);

// Set the cluster interface
if(strcemp(argv[3], ".") !'= @)
check_success(network_configuration->set_cluster_interface(argv[3]) == 0);

// Set the discovery address
if(strcmp(argv[4], ".") !'= 0)
check_success(network_configuration->set_discovery_address(argv[4]) == 0);

// Add configured hosts
for(int i = 5; i < argc; ++i)
check_success(network_configuration->add_configured_host(argv[i]) == 0);

// Set a host property

mi: :base::Handle<mi: :neuraylib::IGeneral_configuration> general_configuration(
neuray->get_api_component<mi: :neuraylib::IGeneral_configuration>());

general_configuration->set_host_property("application_name", "example_networking");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 257

20 Source code for examples 20.10 example_networking.cpp

// Load the Iray Photoreal plugin. This is only relevant when the example is used in conjunction
// with the node manager example.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> plugin_configuration(
neuray->get_api_component<mi::neuraylib::IPlugin_configuration>());
check_success(plugin_configuration->load_plugin_library(
"libiray" MI_BASE_DLL_FILE_EXT) == 0);
}

void print_configuration(mi::neuraylib::INeuray* neuray)
{
mi: :base::Handle<mi: :neuraylib::INetwork_configuration> network_configuration(
neuray->get_api_component<mi: :neuraylib::INetwork_configuration>());

// Print networking mode
mi::neuraylib::INetwork_configuration: :Mode mode = network_configuration->get_mode();
switch(mode) {
case mi::neuraylib::INetwork_configuration::MODE_OFF:
fprintf(stderr, "mode: OFF\n");
break;
case mi::neuraylib::INetwork_configuration::MODE_TCP:
fprintf(stderr, "mode: TCP\n");
break;
case mi::neuraylib::INetwork_configuration::MODE_UDP:
fprintf(stderr, "mode: UDP\n");
break;
case mi::neuraylib::INetwork_configuration::MODE_TCP_WITH_DISCOVERY :
fprintf(stderr, "mode: TCP_WITH_DISCOVERY\n");
break;
default:
fprintf(stderr, "mode: error\n");
break;

// Print the multicast address
mi: :base::Handle<const mi: :IString> string(network_configuration->get_multicast_address());
fprintf(stderr, "multicast address: %s\n", string->get_c_str());

// Print the cluster interface
string = network_configuration->get_cluster_interface();
fprintf(stderr, "cluster interface: %s\n", string->get_c_str());

// Print the discovery address
string = network_configuration->get_discovery_address();
fprintf(stderr, "discovery address: %s\n", string->get_c_str());

// Print the configured hosts

fprintf(stderr, "configured hosts: ");

for(mi::Uint32 i = 0; i < network_configuration->get_number_of_configured_hosts(); ++i) {
string = network_configuration->get_configured_host(i);
fprintf(stderr, "%s ", string->get_c_str());

}

fprintf(stderr, "\n");

}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 258

20 Source code for examples 20.10 example_networking.cpp

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc < 5) {
std::cerr << "Usage: example_networking <mode> <multicast_address> <cluster_interface>\\\n"
<< " <discovery_address> [<host1> <host2> ... <hostN>]" << std::endl;
keep_console_open();
return EXIT_FAILURE;

}

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Create callback handler
mi: :base::Handle<mi: :neuraylib::IHost_callback> host_callback(new Host_callback());

// Configure the neuray library
configuration(neuray.get(), host_callback.get(), argc, argv);

// Print the configuration
print_configuration(neuray.get());

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Wait for other hosts to join/leave the cluster. The Host_callback objects prints
// messages of joining or leaving hosts.
sleep_seconds(30);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);

// Unregister the callback handler again

mi::base::Handle<mi: :neuraylib::INetwork_configuration> network_configuration(
neuray->get_api_component<mi: :neuraylib::INetwork_configuration>());

network_configuration->unregister_host_callback(host_callback.get());

network_configuration = 0;

neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 259

20 Source code for examples 20.11 example_on_demand_mesh.cpp

20.11 example_on_demand_mesh.cpp

[Fhkkhhkkhhkhhhkhhkhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhrkhhhkhhkhhrhrhhhhrhhhkhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

#include <iostream>
#include <vector>

class Cube : public mi::base::Interface_implement<mi::neuraylib::ISimple_mesh>

{

public:
// Constructor. Sets up some of the member arrays of this class from a different representation.
Cube();

// Methods required by the mi::neuraylib::ISimple_mesh interface. In this implementation they
// simply return pointers to member arrays of the class (or @ for not-present optional data

// arrays).

mi::Uint32 data_size() const { return m_data_size; }

const mi::Float32_3_struct* get_points() const { return &m_data_points[@]; }

const mi::Float32_3_struct* get_normals() const { return &m_data_normals[@]; }

mi::Uint32 get_texture_dimension(mi::Uint32 /*texture_space_id*/) const { return 0; }

const mi::Float32* get_texture_coordinates(mi::Uint32 /*texture_space_id*/) const { return©; }
mi::Uint32 get_userdata_dimension(mi::Uint32 /*userdata_id*/) const { return 0; }

const mi::Float32* get_userdata(mi::Uint32 /*userdata_id*/) const { return 0; }

const charx get_userdata_name(mi::Uint32 /*userdata_idx/) const { return 0; }

const mi::Float32_3_struct* get_derivatives() const { return 0; }

mi::Uint32 get_motion_vector_count() const { return @; }

const mi::Float32_3_struct* get_motion_vectors() const { return 0; }

mi::Uint32 triangles_size() const { return m_triangles_size; }

const mi::Uint32_3_struct* get_triangles() const { return &m_triangles[@]; }

bool has_unique_material() const { return true; }

const mi::Uint32* get_material_indices() const { return 0; }

private:
// These arrays hold the actual data used during runtime.
// The first two are set up in the constructor from the arrays below.
static const mi::Uint32 m_data_size = 24;
static const mi::Uint32 m_triangles_size = 12;
mi::Float32_3 m_data_points[m_data_size];
mi::Float32_3 m_data_normals[m_data_size];
static mi::Uint32_3 m_triangles[m_triangles_size];

// These arrays hold the original data using a multi-index format.

// They are used in the constructor to set up some of the arrays above.
static const mi::Uint32 m_n_points = 8;

static const mi::Uint32 m_n_normals = 6;

static mi::Float32_3 m_points[m_n_points];

static mi::Float32_3 m_normals[m_n_normals];

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 260

20 Source code for examples 20.11 example_on_demand_mesh.cpp

static mi::Uint32 m_point_indices[m_data_size];
static mi::Uint32 m_normal_indices[m_data_size];

b

mi::Float32_3 Cube::m_points[m_n_points] = {
mi::Float32_3(-0.5, -0.5, -8.5),

mi::Float32_3(0.5, -0.5, -0.5),
mi::Float32_3(-0.5, 0.5, -0.5),
mi::Float32_3(©.5, 0.5, -0.5),
mi::Float32_3(-0.5, -0.5, 0.5),
mi::Float32_3(©.5, -0.5, ©0.5)
mi::Float32_3(-0.5, 0.5, 0.5),
mi::Float32_3(©.5, 0.5, ©0.5)

}s

mi::Float32_3 Cube::m_normals[m_n_normals] = {
mi::Float32_3(o, 0, -1),

mi::Float32_3(9, -1, 0),
mi::Float32_3(-1, ©, ©),
mi::Float32_3(+1, @, 0),
mi::Float32_3(90, +1, 0),
mi::Float32_3(©, 0, +1)

|3

mi::Uint32 Cube::m_point_indices[m_data_size] = {
e, 2,3,1,80,1,5, 4,890, 46, 2,1,3,7,5,2,6, 7,3, 45,7, 61},

mi::Uint32 Cube::m_normal_indices[m_data_size] = {
e, 0, 0,0,1,1,1,1,2,2,2,2,3,3,3,3, 4 4,4, 4,5,5, 5 51},

mi::Uint32_3 Cube::m_triangles[m_triangles_size] = {
mi::Uint32_3(o, 1, 2),
mi::Uint32_3(0, 2, 3)
mi::Uint32_3(4, 5, 6)
mi::Uint32_3(4, 6, 7)
mi::Uint32_3(8, 9, 10)
mi::Uint32_3(8, 10, 11)
mi::Uint32_3(12, 13, 14),
mi::Uint32_3(12, 14, 15)
mi::Uint32_3(16, 17, 18)
mi::Uint32_3(16, 18, 19)
mi::Uint32_3(20, 21, 22)
mi::Uint32_3(20, 22, 23)

+i

Cube: :Cube()
{
for(mi::Size i = 0; i < m_data_size; ++i)
m_data_points[i] = m_points[m_point_indices[i]];
m_data_normals[i] = m_normals[m_normal_indices[i]];
}
}

class Cube_callback : public mi::base::Interface_implement<mi::neuraylib::IOn_demand_mesh_callback>

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 261

20 Source code for examples 20.11 example_on_demand_mesh.cpp

{

const mi::neuraylib::ISimple_mesh* call() const { return new Cube(); }

b

void setup_scene(mi::neuraylib::ITransaction* transaction)
{
mi: :base::Handle<mi: :neuraylib::I0n_demand_mesh> mesh(
transaction->create<mi: :neuraylib::IOn_demand_mesh>("On_demand_mesh"));

// Set the callback object that returns an instance of Cube.

mi: :base::Handle<mi: :neuraylib::I0n_demand_mesh_callback> callback(new Cube_callback());
mesh->set_callback(callback.get());

callback = 9;

// Set the remaining fields on the on-demand mesh.
mesh->set_bbox(mi::Bbox3(-0.5, -0.5, -0.5, 8.5, 0.5, 0.5));
mesh->set_maximum_displacement(©);

// Set the visible attribute and the material.
mi::base::Handle<mi: :IBoolean> visible(
mesh->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);
visible = 0;
mi::base::Handle<mi: :IRef> material(mesh->create_attribute<mi::IRef>("material", "Ref"));
check_success(material->set_reference("yellow_material") == 0);
material = 9;

// Store the on-demand mesh.
check_success(transaction->store(mesh.get(), "on_demand_mesh") == 0);
mesh = 0;

// Change the instance of the yellow cube to point to the on-demand mesh instead.
mi: :base::Handle<mi: :neuraylib::IInstance> instance(
transaction->edit<mi: :neuraylib::IInstance>("cube_instance"));
check_success(instance->attach("on_demand_mesh") == 0);
instance = 0;

}

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 262

20 Source code for examples 20.11 example_on_demand_mesh.cpp

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Replace the triangle mesh by a equivalent on-demand mesh.
setup_scene(transaction.get());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi::neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi::neuraylib::IScene>("the_scene");

mi::base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 263

20 Source code for examples 20.11 example_on_demand_mesh.cpp

export_api->export_canvas("file:example_on_demand_mesh.png", canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(argc '= 2) {
std::cerr << "Usage: example_on_demand_mesh <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 264

20 Source code for examples 20.12 example_particles.cpp

20.12 example_particles.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"
#include <iostream>

#include <map>

#include <vector>

unsigned int lcg_a = 134775815;
unsigned int lcg_c = 123456;
unsigned int lcg_m =1 << 31;
unsigned int lcg_prev = 33478921;
unsigned int get_random_uint()

{

mi::Uint64 val = (lcg_a * lcg_prev + lcg_c) % lcg_m;

lcg_prev = static_cast<unsigned int>(val);
return lcg_prev;
}
float get_random_float(const float& min, const float& max)
{
return ((float(get_random_uint()) * (max - min)) / float(lcg_m)) + min;
}

mi::neuraylib::IParticles* create_particles_cuboid(mi: :neuraylib::ITransaction* transaction)

{

// Some constants to define the particles cuboid

const mi::Float32_3 cuboid_center(-0.5f, 0.f, 0.75f);
const mi::Float32 cuboid_x_length = 2.6f;

const mi::Float32 cuboid_y_length = 0.5f;

const mi::Float32 cuboid_z_length = 1.5f;

const mi::Float32 min_particles_radius = 0.01f;
const mi::Float32 max_particles_radius = 0.025f;

const unsigned int num_particles = 1000;

// Constants derived from the ones above

const mi::Float32 cuboid_min_x = cuboid_center.x - cuboid_x_length * 0.5f;
const mi::Float32 cuboid_max_x = cuboid_center.x + cuboid_x_length * @.5f;
const mi::Float32 cuboid_min_y = cuboid_center.y - cuboid_y_length * 0.5f;
const mi::Float32 cuboid_max_y = cuboid_center.y + cuboid_y_length * 0.5f;
const mi::Float32 cuboid_min_z = cuboid_center.z cuboid_z_length * @.5f;
const mi::Float32 cuboid_max_z = cuboid_center.z + cuboid_z_length * 0.5f;

mi::neuraylib::IParticles* particles = transaction->create<mi::neuraylib::IParticles>("Particles")

particles->set_type(mi: :neuraylib: :PARTICLE_TYPE_SPHERE);

© 2024 NVIDIA Corporation

NVIDIA Iray - Programmer’s Manual

265

20 Source code for examples 20.12 example_particles.cpp

// In this example the particles will be added all at once, but they can also be added one by one
std::vector<mi::Float32> particles_data;

for (unsigned int n = @; n < num_particles; ++n) {
// Draw a random position inside the cuboid
const float x = get_random_float(cuboid_min_x, cuboid_max_x);
const float y = get_random_float(cuboid_min_y, cuboid_max_y);
const float z = get_random_float(cuboid_min_z, cuboid_max_z);

// Draw a random radius
const float radius = get_random_float(min_particles_radius, max_particles_radius);

particles_data.push_back(x);
particles_data.push_back(y);
particles_data.push_back(z);
particles_data.push_back(radius);

// 'particles_data’ now contains 4 times as many floats as there are particles
particles->reserve(num_particles);
particles->set_data(&particles_data.front(), num_particles);

return particles;

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)

{
// Create the particles object
mi::base::Handle<mi: :neuraylib::IParticles> particles_object(create_particles_cuboid(transaction)
transaction->store(particles_object.get(), "particles_obj");

// Create the instance for the particles object
mi::base::Handle<mi: :neuraylib::IInstance> instance(

transaction->create<mi::neuraylib::IInstance>("Instance"));
instance->attach("particles_obj");

// Set the transformation matrix, the visible attribute, and the material
mi::Float64_4_4 matrix(1.0);

matrix.translate(0.0, -0.4, 0.0);

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

mi::base::Handle<mi: :IRef> material(instance->create_attribute<mi::IRef>("material", "Ref"));
material->set_reference("red_material");

transaction->store(instance.get(), "instance_particles");

// Attach the instance to the root group

mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));

group->attach("instance_particles");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 266

20 Source code for examples 20.12 example_particles.cpp

}

void configuration(mi::neuraylib::INeuray* neuray, const charx mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi::base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi::neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add two triangle meshes to the scene
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 267

20 Source code for examples 20.12 example_particles.cpp

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());
scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_particles.png”, canvas.get());

transaction->commit();

}

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc '= 2) {
std::cerr << "Usage: example_particles <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const charx mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi::neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 268

20 Source code for examples 20.12 example_particles.cpp

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 269

20 Source code for examples 20.13 example_plugins.cpp

20.13 example_plugins.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>
#include "example_shared.h"
#include "imy_class.h"

void test_plugin(mi::neuraylib::INeuray* neuray)

{

// Get the database, the global scope of the database, and create a transaction in the global
// scope.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi::base::Handle<mi::neuraylib::IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Create instance of My_class and call a method on it.

mi: :base::Handle<IMy_class> my_class(transaction->create<IMy_class>("My_class"));
check_success(my_class.is_valid_interface());

my_class->set_foo(42);

// Store instance of My_class in the database and release the handle
transaction->store(my_class.get(), "some_name");
my_class = 0;

// Get the instance of My_class from the database again
my_class = transaction->edit<IMy_class>("some_name");
check_success(my_class.is_valid_interface());
check_success(my_class->get_foo() == 42);

my_class = 0;

transaction->commit();

}

int main(int /*argc*/, charx /*argvx/[])

{
// Access the neuray library
mi: :base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Load the plugin

mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> plugin_configuration(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());

check_success(plugin_configuration->load_plugin_library(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 270

20 Source code for examples 20.13 example_plugins.cpp

"./libplugin” MI_BASE_DLL_FILE_EXT) == 0);
plugin_configuration = ©;

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Interact with the loaded plugin
test_plugin(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 271

20 Source code for examples 20.14 example_polygon_mesh.cpp

20.14 example_polygon_mesh.cpp

/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.

kkkkkkhhkkhhhkhhhkhhhkhhhhhhhkhhkhhhkdhhkhhhhhhhkhhhhhhkhhhkhhhkdhkhhhkkhhhkkdhkkr/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

#include <iostream>

class Cylinder
{
public:
Cylinder(mi::Uint32 n, mi::Float32 radius, mi::Float32 height)
:m_n(n), m_radius(radius), m_height(height)
{
m_mesh_connectivity = new mi::Uint32[2*n + 4xn];
m_normal_connectivity = new mi::Uint32[2*n + 4%n];
m_offsets = new mi::Uint32[n + 2 + 1];

// offsets to the first vertex index of each polygon

m_offsets[0] = O; // base (n vertices)
m_offsets[1] = n; // top (n vertices)
for(mi::Uint32 i = 0; i <= n; ++1i)

m_offsets[2+i] = 2*n + 4%i; // sides (4 vertices each)

// the mesh connectivity
mi::Uint32 index = 0;

for(mi::Uint32 i = 0; i < n; ++1i) // base (first n even indices)
m_mesh_connectivity[index++] = 2%i;

for(mi::Uint32 i = 0; i < n; ++i) // top (first n odd indices)
m_mesh_connectivity[index++] = 2*i+1;

for(mi::Uint32 1 =0; i < n; ++i) { // sides (four subsequent indices)
m_mesh_connectivity[index++] = 2x*i;

m_mesh_connectivity[index++]
m_mesh_connectivity[index++]
m_mesh_connectivity[index++]

(2%xi + 2) % (2*n);
(2*i + 3) % (2*n);
(2%i + 1) % (2*n);

// the custom connectivity for normals

index = 9;

for(mi::Uint32 i = 0; i < n; ++1i) // base (one constant normal)
m_normal_connectivity[index++] = 0;

for(mi::Uint32 i = 0; i < n; ++i) // top (one constant normal)
m_normal_connectivity[index++] = 1;

for(mi::Uint32 1 =0; i < n; ++i) { // sides (two normals each, shared
m_normal_connectivity[index++] = i; // with adjacent side face)
m_normal_connectivity[index++] (i+1) % n;
m_normal_connectivity[index++] (i+1) % n;
m_normal_connectivity[index++] i;

}

2
2
2
2

+ + + +

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 272

20 Source code for examples 20.14 example_polygon_mesh.cpp

}

~Cylinder ()

{
delete[] m_mesh_connectivity;
delete[] m_normal_connectivity;
delete[] m_offsets;

}

mi::Uint32 num_points() const { return m_n * 2; }

mi::Uint32 num_normals() const { return m_n + 2; }

mi::Uint32 num_polys() const { return m_n + 2; }

mi::Uint32 polygon_size(mi::Uint32 p) const { return m_offsets[p+1] - m_offsets[p]; }
mi::Uint32* polygon_indices(mi::Uint32 p) const { return &m_mesh_connectivity[m_offsets[p]]; }
mi::Uint32* normal_indices(mi::Uint32 p) const { return &m_normal_connectivity[m_offsets[p]]; }

mi::Float32_3 point(mi::Uint32 index)
{
mi::Uint32 i = index / 2;
mi::Float32 angle = static_cast<mi::Float32>(2.0f * MI_PI * i / m_n);

if(index % 2 == 0)
return mi::Float32_3(
-m_height/2.0f, m_radius * std::sin(angle), m_radius * std::cos(angle));
else
return mi::Float32_3(
m_height/2.0f, m_radius * std::sin(angle), m_radius * std::cos(angle));

}

mi::Float32_3 normal(mi::Uint32 index)

{
if(index == @) return mi::Float32_3(-1.ef, ©.ef, 0.0f);
if(index == 1) return mi::Float32_3(1.ef, ©.ef, 0.0f);

mi::Float32 angle = static_cast<mi::Float32>(2.0f * MI_PI * (index-2) / m_n);
return mi::Float32_3(0.8f, std::sin(angle), std::cos(angle));

private:
mi::Uint32 m_n;
mi::Float32 m_radius, m_height;
mi::Uint32* m_mesh_connectivity;
mi::Uint32* m_normal_connectivity;
mi::Uint32* m_offsets;

}s

mi::neuraylib::IPolygon_mesh* create_cylinder(mi::neuraylib::ITransaction* transaction,
mi::Uint32 n, mi::Float32 radius, mi::Float32 height)
{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 273

20 Source code for examples 20.14 example_polygon_mesh.cpp

Cylinder cylinder(n, radius, height);

// Create an empty polygon mesh
mi::neuraylib::IPolygon_mesh* mesh

= transaction->create<mi::neuraylib::IPolygon_mesh>("Polygon_mesh");
check_success(mesh);

// Create a cylinder (points and polygons)

mesh->reserve_points(cylinder.num_points());

for(mi::Uint32 i = 0; i < cylinder.num_points(); ++1i)
mesh->append_point(cylinder.point(i));

for(mi::Uint32 i = 0; i < cylinder.num_polys(); ++i)
mesh->add_polygon(cylinder.polygon_size(1i));

// Map vertices of the polygons to points
mi: :base::Handle<mi: :neuraylib::IPolygon_connectivity> mesh_connectivity(
mesh->edit_mesh_connectivity());
for(mi::Uint32 i = 0; i < cylinder.num_polys(); ++i)
mesh_connectivity->set_polygon_indices(
mi::neuraylib::Polygon_handle(i), cylinder.polygon_indices(1i));
check_success(mesh->attach_mesh_connectivity(mesh_connectivity.get()) == 0);

// Create a custom connectivity for normal vectors and map vertices to entries in the
// attribute vector
mi: :base::Handle<mi: :neuraylib::IPolygon_connectivity> normal_connectivity(
mesh->create_connectivity());
for(mi::Uint32 i = @; i < cylinder.num_polys(); ++1i)
normal_connectivity->set_polygon_indices(
mi::neuraylib::Polygon_handle(i), cylinder.normal_indices(1i));

// Create an attribute vector for the normals

mi: :base::Handle<mi: :neuraylib: :IAttribute_vector> normals(
normal_connectivity->create_attribute_vector(mi::neuraylib::ATTR_NORMAL));

for(mi::Uint32 i = @; i < cylinder.num_normals(); ++i)
normals->append_vector3(cylinder.normal(i));

check_success(normals->is_valid_attribute());

check_success(normal_connectivity->attach_attribute_vector(normals.get()) == 0);

check_success(!'normals->is_valid_attribute());

check_success(mesh->attach_connectivity(normal_connectivity.get()) == 0);

return mesh;

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)

]
[ev)
(o))
'y

mi::Float32 cylinder_radius
mi::Float32 cylinder_height

1]
—
N
—

// Create the red cylinder

mi: :base::Handle<mi: :neuraylib::IPolygon_mesh> mesh_red(create_cylinder(
transaction, 23, cylinder_radius, cylinder_height));

transaction->store(mesh_red.get(), "mesh_red");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 274

20 Source code for examples 20.14 example_polygon_mesh.cpp

// Create the instance for the red cylinder

mi: :base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

instance->attach("mesh_red");

// Set the transformation matrix, the visible attribute, and the material
mi::Float64_4_4 matrix(1.0);

matrix.translate(-0.1, -cylinder_radius, 0.2);

matrix.rotate(0.0, -0.5 * MI_PI_2, 0.0);

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

mi::base::Handle<mi: :IRef> material(instance->create_attribute<mi::IRef>("material”, "Ref"));
material->set_reference("red_material”);

transaction->store(instance.get(), "instance_red");

// And attach the instance to the root group

mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));

group->attach("instance_red");

// Tessellate the polygon mesh of the red cylinder.

mi::base::Handle<mi::neuraylib::ITessellator> tessellator(
transaction->create<mi: :neuraylib::ITessellator>("Tessellator"));

mi: :base::Handle<const mi: :neuraylib::IPolygon_mesh> c_mesh_red(
transaction->access<mi: :neuraylib::IPolygon_mesh>("mesh_red"));

mi: :base::Handle<mi: :neuraylib::ITriangle_mesh> m_mesh_blue(
tessellator->run(c_mesh_red.get()));

transaction->store(m_mesh_blue.get(), "mesh_blue");

// Create the instance for the blue cylinder
instance = transaction->create<mi::neuraylib::IInstance>("Instance");
instance->attach("mesh_blue");

// Set the transformation matrix, the visible attribute, and the material
matrix = mi::Float64_4_4(1.9);

matrix.translate(-1.1, -cylinder_radius, -1.1);

instance->set_matrix(matrix);

visible = instance->create_attribute<mi::IBoolean>("visible", "Boolean");
visible->set_value(true);

mi::base::Handle<mi: :IRef> ref(instance->create_attribute<mi::IRef>("material”, "Ref"));
ref->set_reference("blue_material");

transaction->store(instance.get(), "instance_blue");

// And attach the instance to the root group
group->attach("instance_blue");

}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 275

20 Source code for examples 20.14 example_polygon_mesh.cpp

void configuration(mi::neuraylib::INeuray* neuray, const charx mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImagelO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi::neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == @);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi::neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add a polygon mesh and a tessellated blue mesh to the scene
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode
scene = transaction->edit<mi::neuraylib::IScene>("the_scene");
mi::base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));
check_success(render_context.is_valid_interface());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 276

20 Source code for examples 20.14 example_polygon_mesh.cpp

mi::base::Handle<mi::IString> scheduler_mode(transaction->create<mi::IString>());
scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi::base::Handle<mi: :neuraylib::IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_polygon_mesh.png", canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(argc '= 2) {
std::cerr << "Usage: example_polygon_mesh <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi::neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);

neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 277

20 Source code for examples 20.14 example_polygon_mesh.cpp

return EXIT_SUCCESS;
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 278

20 Source code for examples 20.15 example_progressive_rendering.cpp

20.15 example_progressive_rendering.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <iomanip>
#include <iostream>
#include <sstream>

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_advanced.h"

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);

}

void rendering(mi::neuraylib::INeuray* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

// Create the scene object

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 279

20 Source code for examples 20.15 example_progressive_rendering.cpp

mi::base::Handle<mi::neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));
scene->set_rootgroup(import_result->get_rootgroup());
scene->set_options(import_result->get_options());
scene->set_camera_instance(import_result->get_camera_inst());
transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

scene = 0;

// Render progressively at most 10 frames
for(mi::Size i = 0; i < 10; ++i) {

// Create the render target and render the i-th frame of the scene
mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(512, 384));
mi::Sint32 result = render_context->render(transaction.get(), render_target.get(), 0);
check_success(result >= 0);

// Write the image to disk

mi::base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

std::ostringstream str;

str << "example_progressive_rendering_" << std::setw(2) << std::setfill('0’) << i
<< ".png";

export_api->export_canvas(str.str().c_str(), canvas.get());

// Leave render loop if the termination criteria have been met
if(result > 0)
break;

// Pick the cube.
mi::base::Handle<mi: :neuraylib::IPick_array> pick_array(
render_context->pick(transaction.get(), mi::Float32_2(128, 192)));
std::cerr << "Picked objects:" << std::endl;
for(mi::Uint32 i = 0; i < pick_array->get_length(); ++i) {
mi: :base::Handle<mi: :neuraylib: :IPick_result> pick_result(pick_array->get_pick_result(i));
mi::Float64_3 hit_point = pick_result->get_world_point();
std::cerr << "Object " << i << ": \"" << pick_result->get_picked_object_name() << "\",
<< "hit point (" << hit_point.x << ", " << hit_point.y << << hit_point.z << "), '
<< "path \"" << pick_result->get_path(0) << "\"";
mi::Uint32 path_length = pick_result->get_path_length();
for(mi::Uint32 j = 1; j < path_length; ++j)
std::cerr << ", \"" << pick_result->get_path(j) << "\"";
std::cerr << std::endl;

¥

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 280

20 Source code for examples 20.15 example_progressive_rendering.cpp

transaction->commit();

}

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(argc '= 3) {
std::cerr << "Usage: example_progressive_rendering <scene_file> <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}
const char#* scene_file
const char* mdl_path

argv[1];
argv([2];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get(), scene_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 281

20 Source code for examples 20.16 example_psd_exporter.cpp

20.16 example_psd_exporter.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <cassert>
#include <cstdio>
#include <iostream>
#include <limits>

#include <mi/neuraylib.h>
#include "example_shared.h"

#ifndef MI_PLATFORM_WINDOWS
#include <arpa/inet.h>

#else

#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN 1
#endif

#include <winsock2.h>

#endif

class Render_target : public mi::base::Interface_implement<mi::neuraylib::IRender_target>
{
public:

// Constructor. Creates a render target with three canvases.

Render_target(mi::Uint32 width, mi::Uint32 height, mi::neuraylib::IImage_api* image_api);

// Implement the interface of mi::neuraylib::IRender_target.

mi::Uint32 get_canvas_count() const;

mi::neuraylib::Canvas_type get_canvas_type(mi::Uint32 index) const;

const char* get_canvas_name(mi::Uint32 index) const;

const mi::neuraylib::ICanvas_parameters* get_canvas_parameters(mi::Uint32) const;
const mi::neuraylib::ICanvas* get_canvas(mi::Uint32 index) const;
mi::neuraylib::ICanvas* get_canvas(mi::Uint32 index);

// Normalizes the contents of the second and third canvas.
void normalize();

private:
// The three canvases of this render target.
mi: :base::Handle<mi: :neuraylib::ICanvas> m_canvas[3];

b

FILEx g_file;

void write_int8(mi::Uint8 data)
{

fwrite(&data, 1, 1, g_file);
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 282

20 Source code for examples

20.16 example_psd_exporter.cpp

void write_int16(mi::Uint16 data)

{
data = htons(data);
fwrite(&data, 2, 1, g_file);
}
void write_int32(mi::Uint32 data)
{
data = htonl(data);
fwrite(&data, 4, 1, g_file);
}

void write_buf(const void* p, mi::Size length)

{
fwrite(p, length, 1, g_file);

}
void write_str(const char* s)
{
write_buf(s, strlen(s));
}

void write_str_pascal(const char* s, mi::Size padding)
{
mi::Size len = strlen(s);
if(len > 255)
len = 255;
write_int8(static_cast<mi::Uint8>(len));
write_buf(s, len);
for(mi::Size i = (len % padding) + 1; i < padding; ++i)
write_int8(0);
}

void write_channel(
const mi::Uint8* input,
mi::Uint32 width,
mi::Uint32 height,
mi::Uint32 bytes_per_channel,
mi::Uint32 stride)

mi::Uint8*% output = new mi::Uint8[width * height * bytes_per_channel];

for(mi::Uint32 i = @; i < width * height; ++i)
for(mi::Uint32 b = @; b < bytes_per_channel; ++b)

output[ixbytes_per_channel + b] = input[i*stride + bytes_per_channel-1-b];

write_buf(output, width * height * bytes_per_channel);
delete[] output;
}

mi::Uint32 get_channel_count(const char* pixel_type)

{

if(strcmp(pixel_type, "Float32<4>") == @) return 4;
if(strcmp(pixel_type, "Rgba") == 0) return 4;
if(strcmp(pixel_type, "Rgbea") == 0) return 4;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual

283

20 Source code for examples 20.16 example_psd_exporter.cpp

if(strcmp(pixel_type, "Rgba_16") == 8) return 4;
if(strcmp(pixel_type, "Color") == 0) return 4;
return 3;

}

mi::Uint32 get_bytes_per_channel(const charx pixel_type)
{

if(strcmp(pixel_type, "Sint8") == 0) return 1;
if(strcmp(pixel_type, "Sint32") == 0) return 1;
if(strcmp(pixel_type, "Rgb") == @) return 1;
if(strcmp(pixel_type, "Rgba") == 0) return 1;

return 2;

const charx get_pixel_type(mi::Uint32 bytes_per_channel, mi::Uint32 channels)

{

assert(channels == || channels == 4);

switch(bytes_per_channel) {
case 1: return channels == 3 ? "Rgb" . "Rgba";
case 2: return channels == 3 ? "Rgh_16" : "Rgba_16";
default: assert(false); return "Rgb";

}
}

bool export_psd(
const mi::IArray* canvases,
const mi::IArray* names,
const charx filename,
mi::neuraylib::IImage_api* image_api)

if(!canvases || !filename || !image_api)
return false;

// Check consistent array length
if(names && names->get_length() != canvases->get_length())
return false;

// Compute maximum width, height, bytes per channel, and total number of layers
mi::Uint32 total_width = 9;
mi::Uint32 total_height 9;
mi::Uint32 total_layers 0;
mi::Uint32 bytes_per_channel = 9;
for(mi::Uint32 i = @; i < canvases->get_length(); ++i) {
mi: :base::Handle<const mi::neuraylib::ICanvas> canvas(
canvases->get_element<mi: :neuraylib::ICanvas>(1i));
if(!canvas.is_valid_interface())
return false;
total_width = std::max(total_width, canvas->get_resolution_x());
total_height = std::max(total_height, canvas->get_resolution_y());
total_layers += canvas->get_layers_size();
bytes_per_channel = std::max(bytes_per_channel,
get_bytes_per_channel(canvas->get_type()));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 284

20 Source code for examples 20.16 example_psd_exporter.cpp

// Reject canvases too large for PSD files version 1
if(total_width > 30000 || total_height > 30000)
return false;

// Reject if too many layers in total
if(total_layers == || total_layers > 56)
return false;

// Check names
bool has_result = false;
for(mi::Uint32 i = 0; names && i < names->get_length(); ++i) {
mi::base::Handle<const mi::IString> name(
names->get_element<mi::IString>(1i));
if(!'name.is_valid_interface())
return false;
if(strcmp(name->get_c_str(), "result") == 0)
has_result = true;

g_file = fopen(filename, "wb");
if(!g_file)
return false;

// File header section

write_str("8BPS"); // signature

write_int16(1); // version

write_buf("\0\0\0\0\0\0", 6); // reserved

write_int16(3); // number of channels

write_int32(total_height); // height

write_int32(total_width); // width

write_int16(static_cast<mi::Uint16>(8*bytes_per_channel)); // bits per channel
write_int16(3); // color mode (RGB)

write_int32(0); // length of color mode data section
write_int32(©); // length of image resource section

// Layer and mask information section

write_int32(0); // length of layer and mask information section (dummy)
long lamis_start = ftell(g_file);

// Layer and mask information section: Layer info subsection

write_int32(©); // length of layer information section (dummy)
long lis_start = ftell(g_file);

write_int16(static_cast<mi::Uint16>(total_layers)); // layer count
// Layer records

for(mi::Size i = @; i < canvases->get_length(); ++i) {

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 285

20 Source code for examples 20.16 example_psd_exporter.cpp

mi: :base::Handle<const mi::neuraylib::ICanvas> canvas(
canvases->get_element<mi: :neuraylib::ICanvas>(1i));

mi::Uint32 width = canvas->get_resolution_x();

const char* name = "";

if(names) {
mi::base::Handle<const mi::IString> s(names->get_element<mi::IString>(1i));
name = s->get_c_str();

}

bool is_result = strcmp(name, "result") == 0;
for(mi::Size j = 0; j < canvas->get_layers_size(); ++j) {

mi::Uint32 channels = get_channel_count(canvas->get_type());

write_int32(©); // top
write_int32(0); // left
write_int32(total_height); // bottom
write_int32(width); // right

write_int16(static_cast<mi::Uint16>(channels)); // number of channels
mi::Uint32 channel_size = width * total_height * bytes_per_channel + 2;

write_int16(©); // channel ID red
write_int32(channel_size); // byte count red
write_int16(1); // channel ID green
write_int32(channel_size); // byte count green
write_int16(2); // channel ID blue
write_int32(channel_size); // byte count blue
if(channels == 4) {
write_int16(OxFFFF); // channel ID alpha
write_int32(channel_size); // byte count alpha
}
write_str("8BIM"); // blend mode signature
write_str("norm"); // blend mode key
write_int8(255); // opacity
write_int8(0); // clipping
mi::Uint8 flags = static_cast<mi::Uint8>(!has_result || is_result ? 0 : 2);
write_int8(flags); // flags (invisible = 2)
write_int8(0); // filler
write_int32(©); // extra data length (dummy)
long extra_data_start = ftell(g_file);
write_int32(©); // layer mask data length
write_int32(©); // layer blending ranges length
write_str_pascal(name, 4); // layer name

// extra data length

long extra_data_end = ftell(g_file);

fseek(g_file, extra_data_start-4, SEEK_SET);

write_int32(static_cast<mi::Uint32>(extra_data_end-extra_data_start));
fseek(g_file, extra_data_end, SEEK_SET);

// Channel image data

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 286

20 Source code for examples 20.16 example_psd_exporter.cpp

for(mi::Size i = @; i < canvases->get_length(); ++i) {

mi::base::Handle<const mi::neuraylib::ICanvas> canvas(
canvases->get_element<mi: :neuraylib::ICanvas>(1i));

mi::Uint32 width = canvas->get_resolution_x();

mi::Uint32 height canvas->get_resolution_y();

for(mi::Uint32 j = ©; j < canvas->get_layers_size(); ++j) {

mi::Uint32 channels = get_channel_count(canvas->get_type());
mi::Uint8x buffer = new mi::Uint8[width * total_height * channels * bytes_per_channel];
memset(buffer, @, width * total_height * channels * bytes_per_channel);
mi::Size offset = width * (total_height-height) * channels * bytes_per_channel;
const char* pixel_type = get_pixel_type(bytes_per_channel, channels);
image_api->read_raw_pixels(
width, height, canvas.get(), 0, @, j, buffer + offset, true, pixel_type);

for(mi::Uint32 channel = 0; channel < channels; ++channel) {
write_int16(©); // channel compression method (raw)
mi::Uint8+* start = buffer + channel * bytes_per_channel;
mi::Uint32 stride = channels * bytes_per_channel;
write_channel(start, width, total_height, bytes_per_channel, stride);

}

delete[] buffer;

}
}

// length of layer information section

long lis_end = ftell(g_file);

fseek(g_file, lis_start-4, SEEK_SET);

write_int32(static_cast<mi::Uint32>(lis_end-lis_start));
fseek(g_file, lis_end, SEEK_SET);

// length of global layer mask info
write_int32(©);

// length of layer and mask inform. section

long lamis_end = ftell(g_file);

fseek(g_file, lamis_start-4, SEEK_SET);

write_int32(static_cast<mi::Uint32>(lamis_end-lamis_start));
fseek(g_file, lamis_end, SEEK_SET);

// Image data section

mi: :base::Handle<const mi::neuraylib::ICanvas> canvas(
canvases->get_element<mi: :neuraylib::ICanvas>(0));

mi::Uint32 width = canvas->get_resolution_x();

mi::Uint32 height = canvas->get_resolution_y();

for(mi::Uint32 j

0; j < canvas->get_layers_size(); ++j) {

mi: :Uint32 channels = 3;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 287

20 Source code for examples 20.16 example_psd_exporter.cpp

mi::Uint8* buffer
= new mi::Uint8[total_width * total_height * channels * bytes_per_channel];

memset(buffer, 0, total_width * total_height * channels * bytes_per_channel);
mi::Size offset = total_width * (total_height-height) * channels * bytes_per_channel;

mi::Uint32 padding = (total_width - width) * channels * bytes_per_channel;

const char* pixel_type = get_pixel_type(bytes_per_channel, channels);

image_api->read_raw_pixels(

width, height, canvas.get(), 0, 0, j, buffer + offset, true, pixel_type, padding);

write_int16(0); // compression method (raw)
for(mi::Uint32 channel = @; channel < channels; ++channel) {
mi::Uint8+* start = buffer + channel * bytes_per_channel;
mi::Uint32 stride = channels * bytes_per_channel;
write_channel(start, width, total_height, bytes_per_channel, stride);

}

delete[] buffer;
}

fclose(g_file);
return true;

}

bool export_psd(
Render_target* render_target,
const charx filename,
mi::neuraylib::IFactory* factory,
mi::neuraylib::IImage_api* image_api)

if(!render_target || !filename || !image_api)
return false;

mi: :base::Handle<mi: :IDynamic_array> canvases(
factory->create<mi::IDynamic_array>("Interface[]"));

check_success(canvases.is_valid_interface());

mi::base::Handle<mi: :IDynamic_array> names(
factory->create<mi: :IDynamic_array>("String[]"));

check_success(names.is_valid_interface());

for(mi::Uint32 i = 0; i < render_target->get_canvas_count(); ++i) {
mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(1i));
canvases->push_back(canvas.get());
mi::base::Handle<mi: :IString> name(factory->create<mi::IString>("String"));
name->set_c_str(render_target->get_canvas_name(1i));
names->push_back(name.get());

}

return export_psd(canvases.get(), names.get(), filename, image_api);

}

void configuration(mi::neuraylib::INeuray* neuray, const charx mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 288

20 Source code for examples 20.16 example_psd_exporter.cpp

check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);

}

// Constructor. Creates a render target with three canvases.
Render_target::Render_target(mi::Uint32 width, mi::Uint32 height, mi: :neuraylib::IImage_api* image.
{

m_canvas[0] image_api->create_canvas("Color", width, height, 1);

m_canvas[1] = image_api->create_canvas("Float32<3>", width, height, 1);

m_canvas[2] = image_api->create_canvas("Float32", width, height, 1);

}

// Implement the interface of mi::neuraylib::IRender_target.
mi::Uint32 Render_target::get_canvas_count() const { return 3; }
mi::neuraylib::Canvas_type Render_target::get_canvas_type(mi::Uint32 index) const
{
switch (index) {
case 0: return mi::neuraylib::TYPE_RESULT;
case 1: return mi::neuraylib::TYPE_NORMAL;
case 2: return mi::neuraylib::TYPE_DEPTH;
default: return mi::neuraylib::TYPE_UNDEFINED;
}
}
const char* Render_target::get_canvas_name(mi::Uint32 index) const
{
switch (index)
case 0: return "result";
case 1: return "normal";
case 2: return "depth";
default: return 0;
}
}

const mi::neuraylib::ICanvas_parameters* Render_target::get_canvas_parameters(mi::Uint32) const
{ return 9; }
const mi::neuraylib::ICanvas* Render_target::get_canvas(mi::Uint32 index) const
{

if(index >= 3)

return 9;
m_canvas[index]->retain();
return m_canvas[index].get();

}
mi::neuraylib::ICanvas* Render_target::get_canvas(mi::Uint32 index)
{

if(index >= 3)

return 0;
m_canvas[index]->retain();
return m_canvas[index].get();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 289

20 Source code for examples 20.16 example_psd_exporter.cpp

// Normalizes the contents of the second and third canvas.
void Render_target::normalize()

{

// Map values in m_canvas[1] linearly from [-1,1] to [0,1].
mi::base::Handle<mi::neuraylib::ITile> tile(m_canvas[1]->get_tile());
mi::Size n_pixels = tile->get_resolution_x() * tile->get_resolution_y();
mi::Float32_3* datal = static_cast<mi::Float32_3*>(tile->get_data());
for(mi::Size i = @; i < n_pixels; ++i) {
datal[i].x = mi::math::clamp(©.5fxdatal1[i].x + @.5f, ©@.6f, 1.0f);
datal[i].y = mi::math::clamp(@.5fxdata1[i].y + @.5f, ©.6f, 1.0f);
datal[i].z = mi::math::clamp(@.5fxdatal[i].z + ©.5f, @.6f, 1.0f);
}

// Map values in m_canvas[2] (excluding huge values) linearly to [0,1].
tile = m_canvas[2]->get_tile();
n_pixels = tile->get_resolution_x() * tile->get_resolution_y();
mi::Float32* data2 = static_cast<mi::Float32*>(tile->get_data());
mi::Float32 min_value = std::numeric_limits<mi::Float32>::max();
mi::Float32 max_value = std::numeric_limits<mi::Float32>::min();
for(mi::Size i = @; i < n_pixels; ++i) {
if (data2[i] < min_value) min_value = data2[i];
if (data2[i] > max_value && data2[i] < 1.0E38f) max_value = data2[il];
}
if(min_value == max_value)
min_value = max_value-1;
for(mi::Size i = @; i < n_pixels; ++i)
if(data2[i] < 1.0E38f)
data2[i] = 1.08f - (data2[i] - min_value) / (max_value - min_value);
else
data2[i] = @.ef;
}

void rendering(
mi::neuraylib::INeuray#* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file
mi: :base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());
check_success(import_api.is_valid_interface());
mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 290

20 Source code for examples 20.16 example_psd_exporter.cpp

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));
check_success(import_result->get_error_number() == 0);

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi::base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<Render_target> render_target(new Render_target(512, 384, image_api.get()));
check_success(
render_context->render(transaction.get(), render_target.get(), 0) >= 8);

// Write the image to disk (entire render target as one PSD file)
render_target->normalize();
mi: :base::Handle<mi: :neuraylib::IFactory> factory(
neuray->get_api_component<mi: :neuraylib::IFactory>());
check_success(export_psd(
render_target.get(), "example_psd_exporter.psd”, factory.get(), image_api.get()));

// Write the image to disk (individual canvases as PNG files)

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas@(render_target->get_canvas(0));

export_api->export_canvas("file:example_psd_exporter_0.png", canvas@.get());

mi::base::Handle<mi: :neuraylib::ICanvas> canvasl1(render_target->get_canvas(1));

export_api->export_canvas("file:example_psd_exporter_1.png", canvasl.get());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas2(render_target->get_canvas(2));

export_api->export_canvas("file:example_psd_exporter_2.png", canvas2.get());

transaction->commit();

int main(int argc, char* argv[])

{
// Collect command line parameters
if(arge '= 3) {

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 291

20 Source code for examples 20.16 example_psd_exporter.cpp

std::cerr << "Usage: example_psd_exporter <scene_file> <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}
const char* scene_file
const char* mdl_path

argv[1];
argv[2];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get(), scene_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 292

20 Source code for examples 20.17 example_render_target_advanced.h

20.177 example_render_target_advanced.h

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#ifndef EXAMPLE_RENDER_TARGET_ADVANCED_H
#define EXAMPLE_RENDER_TARGET_ADVANCED_H

#include <mi/neuraylib.h>

class Tile : public mi::base::Interface_implement<mi::neuraylib::ITile>
{
public:
// Constructor.
//
// Creates a tile of the given width and height with pixel type "Color".
Tile(mi::Uint32 width, mi::Uint32 height)
{
m_width = width;
m_height = height;
m_data = new mi::Float32[m_width * m_height * 4];

// Destructor
~Tile() { delete[] m_data; }

// Implement the interface of mi::neuraylib::ITile
void set_pixel(mi::Uint32 x_offset, mi::Uint32 y_offset, const mi::Float32* floats)
{
mi::Float32* position = &m_data[(x_offset + y_offset * m_width) * 4];
position[@] = floats[0];
position[1] = floats[1];
position[2] = floats[2];
position[3] = floats[3];
}
void get_pixel(mi::Uint32 x_offset, mi::Uint32 y_offset, mi::Float32* floats) const
{
mi::Float32* position = &m_data[(x_offset + y_offset * m_width) * 4];
floats[@] = position[0@];
floats[1] = position[1];
floats[2] = position[2];
floats[3] position[3];
}
const char* get_type() const { return "Color"; }
mi::Uint32 get_resolution_x() const { return m_width; }
mi::Uint32 get_resolution_y() const { return m_height; }
const void* get_data() const { return m_data; }
void* get_data() { return m_data; }

private:
// Width of the tile
mi::Uint32 m_width;
// Height of the tile

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 293

20 Source code for examples 20.17 example_render_target_advanced.h

mi::Uint32 m_height;
// The data of this tile, 32 bytes per pixel
mi::Float32* m_data;

3
class Canvas : public mi::base::Interface_implement<mi::neuraylib::ICanvas>
{
public:
// Constructor.
//

// Creates a canvas with a single tile of the given width and height.
Canvas(mi::Uint32 width, mi::Uint32 height)
{
m_width = width;
m_height = height;
m_gamma = 1.0f;
m_tile = new Tile(width, height);
}

// Implement the interface of mi::neuraylib::ICanvas
mi::Uint32 get_resolution_x() const { return m_width; }
mi::Uint32 get_resolution_y() const { return m_height; }
mi::Uint32 get_layers_size() const { return 1; }
const mi::neuraylib::ITilex get_tile(mi::Uint32 = @) const
{

m_tile->retain();

return m_tile.get();
}
mi::neuraylib::ITile* get_tile(mi::Uint32 = @)
{

m_tile->retain();

return m_tile.get();
}
const charx get_type() const { return "Color"; }
mi::Float32 get_gamma() const { return m_gamma; }
void set_gamma(mi::Float32 gamma) { m_gamma = gamma; }

private:
// Width of the canvas
mi::Uint32 m_width;
// Height of the canvas
mi::Uint32 m_height;
// Gamma value of the canvas
mi::Float32 m_gamma;
// The only tile of this canvas
mi::base::Handle<mi: :neuraylib::ITile> m_tile;

+s

class Render_target : public mi::base::Interface_implement<mi::neuraylib::IRender_target>
{
public:

// Constructor.

1/

// Creates a render target with a single canvas of the given width and height.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 294

20 Source code for examples 20.17 example_render_target_advanced.h

// This variant uses custom implementations for canvases and tiles that are defined above
// by the classes Tile and Canvas. In these implementations the pixel type is fixed to "Color"
// for simplicity.
Render_target(mi::Uint32 width, mi::Uint32 height)
{
m_canvas = new Canvas(width, height);

}

// Implement the interface of mi::neuraylib::IRender_target
mi::Uint32 get_canvas_count() const { return 1; }
mi::neuraylib::Canvas_type get_canvas_type(mi::Uint32 index) const
{ return index == 0 ? mi::neuraylib::TYPE_RESULT : mi::neuraylib::TYPE_UNDEFINED; }
const mi::neuraylib::ICanvas_parameters* get_canvas_parameters(mi::Uint32) const
{ return 9; }
const mi::neuraylib::ICanvas* get_canvas(mi::Uint32 index) const
{

if(index > 9)

return 0;
m_canvas->retain();
return m_canvas.get();

}
mi::neuraylib::ICanvas* get_canvas(mi::Uint32 index)
{

if(index > 0)

return 0;
m_canvas->retain();
return m_canvas.get();

}

private:
// The only canvas of this render target
mi::base::Handle<mi: :neuraylib::ICanvas> m_canvas;

|3

#endif // MI_EXAMPLE_RENDER_TARGET_ADVANCED_H

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 295

20 Source code for examples 20.18 example_rendering.cpp

20.18 example_rendering.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <iostream>
#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

void rendering(
mi::neuraylib::INeuray* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

// Create the scene object
mi::base::Handle<mi::neuraylib::IScene> scene(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 296

20 Source code for examples 20.18 example_rendering.cpp

transaction->create<mi::neuraylib::IScene>("Scene"));
scene->set_rootgroup(import_result->get_rootgroup());
scene->set_options(import_result->get_options());
scene->set_camera_instance(import_result->get_camera_inst());
transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi::base::Handle<mi: :neuraylib::IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_rendering.png”, canvas.get());

// All transactions need to get committed or aborted.
transaction->commit();

int main(int argc, char* argv[])
{
// Collect command line parameters
if(arge '= 3) {
std::cerr << "Usage: example_rendering <scene_file> <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;

}
const charx scene_file = argv[1];
const char* mdl_path = argv[2];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 297

20 Source code for examples 20.18 example_rendering.cpp

check_start_success(result);

// Do the actual rendering
rendering(neuray.get(), scene_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 298

20 Source code for examples 20.19 example_rtmp_server.cpp

20.19 example_rtmp_server.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

#include <fstream>
#include <iostream>
#include <vector>

class Buffer : public mi::base::Interface_implement<mi::neuraylib::IBuffer>

{
public:
const mi::Uint8* get_data() const { return &m_buffer[0]; }

mi::Size get_data_size() const { return m_buffer.size(); }

Buffer(const std::vector<mi::Uint8>& content) { m_buffer = content; }

private:
std::vector<mi: :Uint8> m_buffer;
3
class Response_handler : public mi::base::Interface_implement<mi::http::IResponse_handler>
{
public:
void handle(mi::http::IConnection* connection)
{
mi::http::IResponse* iresponse(connection->get_response());
iresponse->set_header("Content-Type", "application/x-shockwave-flash");
}
3
class Request_handler : public mi::base::Interface_implement<mi::http::IRequest_handler>
{
public:

Request_handler(const charx swf_file) : m_swf_file(swf_file) { }

bool handle(mi::http::IConnection* connection)

{
std::ifstream file(m_swf_file, std::ios::in|std::ios::binary|std::ios::ate);
check_success(file);

std::ifstream: :pos_type size = file.tellg();
std::vector<mi::Uint8> data(static_cast<mi::Size>(size));
file.seekg(@, std::ios::beg);

file.read(reinterpret_cast<char*>(&data[0]), size);
file.close();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 299

20 Source code for examples 20.19 example_rtmp_server.cpp

mi::base::Handle<mi: :neuraylib: :IBuffer> buffer(new Buffer(data));
connection->enqueue(buffer.get());
return true;

}

private:
const char* m_swf_file;

}s

class Play_event_handler : public mi::base::Interface_implement<mi::rtmp::IPlay_event_handler>

{
public:
bool handle(bool is_start, mi::rtmp::IStream* stream, mi::neuraylib::IVideo_data** out)

{
if(is_start) {
check_success(stream->use_codec("screen video"));
mi::base::Handle<mi: :neuraylib::IVideo_encoder> codec(stream->get_video_codec());

check_success(codec->init(512, 384, out) == 0);
}
else {
mi::base::Handle<mi: :neuraylib::IVideo_encoder> codec(stream->get_video_codec());
check_success(codec->close(out) == 0);
}
return true;
}
3
class Frame_event_handler : public mi::base::Interface_implement<mi::rtmp::IFrame_event_handler>
{
public:

bool handle(
mi::rtmp::IStream* stream, mi::neuraylib::IVideo_data** out, bool send_queue_is_full)
{
if (send_queue_is_full) // we do not want to increase buffering
return true;
mi: :base::Handle<mi: :neuraylib::IVideo_encoder> codec(stream->get_video_codec());
mi::neuraylib::ICanvas* canvas = 0;
{
mi::base::Lock::Block block(&m_cached_canvas_lock);
canvas = m_cached_canvas.get();
if (!canvas)
return true;
canvas->retain();
}
bool result = (codec->encode_canvas(canvas, out) == 0);
canvas->release();
return result;

}

void update_canvas(mi::neuraylib::ICanvas* new_canvas)
{
mi::base::Lock::Block block(&m_cached_canvas_lock);
m_cached_canvas = make_handle_dup(new_canvas);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 300

20 Source code for examples 20.19 example_rtmp_server.cpp

}
private:
mi: :base::Lock m_cached_canvas_lock;
mi::base::Handle<mi: :neuraylib::ICanvas> m_cached_canvas;

b

class Render_event_handler : public mi::base::Interface_implement<mi::rtmp::IRender_event_handler>
{
public:
Render_event_handler(
mi::neuraylib::INeuray#* neuray, mi::neuraylib::IScope* scope, Frame_event_handler* handler)
: m_neuray(neuray, mi::base::DUP_INTERFACE),
m_scope(scope, mi::base::DUP_INTERFACE),
m_frame_handler(handler, mi::base::DUP_INTERFACE)
{

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(m_scope->create_transaction());

{

mi::base::Handle<mi: :neuraylib::IScene> scene(
transaction->edit<mi::neuraylib::IScene>("the_scene"));

m_render_context = scene->create_render_context(transaction.get(), "iray");
check_success(m_render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());
scheduler_mode->set_c_str("interactive");
m_render_context->set_option("scheduler_mode", scheduler_mode.get());
mi::base::Handle<mi: :IFloat32> interval(transaction->create<mi::IFloat32>());
interval->set_value(0.1f);
m_render_context->set_option("interactive_update_interval”, interval.get());

}

transaction->commit();

}

bool handle(mi::rtmp::IStream* /*streamx/)

{

mi::base::Handle<mi: :neuraylib::ITransaction> transaction(m_scope->create_transaction());
{

mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
m_neuray->get_api_component<mi: :neuraylib::IImage_api>());

mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));

check_success(
m_render_context->render(transaction.get(), render_target.get(), 0) >= 0);

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));
m_frame_handler->update_canvas(canvas.get());

}

transaction->commit();

return true;

private:
mi::base::Handle<mi: :neuraylib::INeuray> m_neuray;
mi::base::Handle<mi: :neuraylib::IScope> m_scope;
mi: :base::Handle<Frame_event_handler> m_frame_handler;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 301

20 Source code for examples 20.19 example_rtmp_server.cpp

mi::base::Handle<mi: :neuraylib::IRender_context> m_render_context;

}s

class Stream_event_handler : public mi::base::Interface_implement<mi::rtmp::IStream_event_handler>
{
public:

Stream_event_handler(mi::neuraylib::INeuray* neuray, mi::neuraylib::IScope* scope)

: m_neuray(neuray, mi::base::DUP_INTERFACE), m_scope(scope, mi::base::DUP_INTERFACE) { }

bool handle(
bool is_create, mi::rtmp::IStreamx stream,
const mi::IData* /*command_arguments#*/)
{
if(is_create) {
mi::base::Handle<mi: :rtmp::IPlay_event_handler> play_event_handler(
new Play_event_handler());
stream->register_play_event_handler(play_event_handler.get());
mi: :base::Handle<Frame_event_handler> frame_event_handler(new Frame_event_handler());
mi::base::Handle<mi: :rtmp::IRender_event_handler> render_event_handler(
new Render_event_handler(m_neuray.get(), m_scope.get(), frame_event_handler.get()));
stream->register_render_event_handler(render_event_handler.get());
stream->register_frame_event_handler(frame_event_handler.get());

}

return true;

}

private:
mi::base::Handle<mi: :neuraylib::INeuray> m_neuray;
mi::base::Handle<mi: :neuraylib::IScope> m_scope;

|3

class Call_event_handler : public mi::base::Interface_implement<mi::rtmp::ICall_event_handler>
{
public:
Call_event_handler(mi::neuraylib::IScope* scope) : m_scope(scope, mi::base::DUP_INTERFACE) { }

bool handle(
mi::rtmp::IConnection* /*connectionx*/,
const char* /*procedure_namex*/,
const mi::IData* /*command_arguments#*/,
const mi::IData* user_arguments,
mi::IData** /*response_arguments*/)
{
mi::base::Handle<mi::neuraylib::ITransaction> transaction(m_scope->create_transaction());
{
// The "camera" name matches the camera in main.mi in the examples directory.
mi: :base::Handle<mi: :neuraylib::ICamera> camera(
transaction->edit<mi::neuraylib::ICamera>("camera"));
check_success(camera.is_valid_interface());
mi: :base::Handle<const mi::IMap> imap(user_arguments->get_interface<const mi::IMap>());
check_success(imap.is_valid_interface());
mi: :base::Handle<const mi::ISint32> pan_x(imap->get_value<mi::ISint32>("pan_x"));
if (pan_x) {
mi::Float64 x = camera->get_offset_x();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 302

20 Source code for examples 20.19 example_rtmp_server.cpp

camera->set_offset_x(x - pan_x->get_value<mi::Sint32>());
// The example client also demonstrates how to send/parse a double.
mi::base::Handle<const mi::IFloat64> pan_xd(
imap->get_value<mi::IFloat64>("pan_xd"));
if(pan_xd) {
mi::Float64 xd = pan_xd->get_value<mi::Float64>();

check_success(mi::Sint32(xd) == pan_x->get_value<mi::Sint32>());
}
}
mi::base::Handle<const mi::ISint32> pan_y(imap->get_value<mi::ISint32>("pan_y"));
if(pan_y) A

mi::Float64 y = camera->get_offset_y();
camera->set_offset_y(y - pan_y->get_value<mi::Sint32>());
}
// Demonstrate getting a bool from the example client
mi::base::Handle<const mi::IBoolean> dir(
imap->get_value<mi::IBoolean>("going_right"));

if (dir) {
bool going_right = dir->get_value<bool>();
going_right = !going_right; // avoid compiler warning
}
}

transaction->commit();
return true;

}
private:
mi::base::Handle<mi: :neuraylib::IScope> m_scope;

b

class Connect_event_handler : public mi::base::Interface_implement<mi::rtmp::IConnect_event_handler>
{
public:

Connect_event_handler(mi::neuraylib::INeuray* neuray, mi::neuraylib::IScope* scope)

: m_neuray(neuray, mi::base::DUP_INTERFACE), m_scope(scope, mi::base::DUP_INTERFACE) { }

bool handle(
bool is_create, mi::rtmp::IConnection* connection,
const mi::IData* /*command_arguments*/,
const mi::IData* /*user_argumentsx/)

if(is_create) {
mi::base::Handle<mi: :rtmp::IStream_event_handler> stream_event_handler(
new Stream_event_handler(m_neuray.get(), m_scope.get()));
connection->register_stream_event_handler(stream_event_handler.get());
mi::base::Handle<mi: :rtmp::ICall_event_handler> call_event_handler(
new Call_event_handler(m_scope.get()));
connection->register_remote_call_handler(call_event_handler.get(), "moveCamera");

}

return true;

private:
mi::base::Handle<mi: :neuraylib::INeuray> m_neuray;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 303

20 Source code for examples 20.19 example_rtmp_server.cpp

mi::base::Handle<mi: :neuraylib::IScope> m_scope;

}s

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.

// Also load the default video codec plugin which will be used to encode the rendered frames.

mi::base::Handle<mi: :neuraylib::IPlugin_configuration> pc(

neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());

check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);

check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);

check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == @);

check_success(pc->load_plugin_library("screen_video" MI_BASE_DLL_FILE_EXT) == 0);
}

void prepare_rendering(
mi::neuraylib::INeuray* neuray, const char* scene_file)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi::neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :IString> uri(import_api->convert_filename_to_uri(scene_file));

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), uri->get_c_str()));

check_success(import_result->get_error_number() == 0);

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

// And store it in the database such that the render loop can later access it
transaction->store(scene.get(), "the_scene");
transaction->commit();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 304

20 Source code for examples 20.19 example_rtmp_server.cpp

}

void run_http_and_rtmp_server(
mi::neuraylib::INeuray* neuray, const charx port, const char* swf_file)
{
// Create an HTTP server instance
mi::base::Handle<mi: :http::IFactory> http_factory(
neuray->get_api_component<mi::http::IFactory>());
mi::base::Handle<mi: :http::IServer> http_server(
http_factory->create_server());

// Install our HTTP request and response handlers

mi::base::Handle<mi: :http::IRequest_handler> request_handler(
new Request_handler(swf_file));

http_server->install(request_handler.get());

mi::base::Handle<mi: :http::IResponse_handler> response_handler(
new Response_handler());

http_server->install(response_handler.get());

// Assemble HTTP server address

const char* ip = "0.0.0.0:";

char address[255];

address[0] = '\0';

strncat(address, ip, sizeof(address) - 1);

strncat(address, port, sizeof(address) - 1 - strlen(address));

// Start HTTP server
http_server->start(address);

// Create an RTMP server instance

mi: :base::Handle<mi: :rtmp::IFactory> rtmp_factory(
neuray->get_api_component<mi::rtmp::IFactory>());

mi::base::Handle<mi::rtmp::IServer> rtmp_server(rtmp_factory->create_server());

// Install our HTTP connect handler

mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());

mi::base::Handle<mi: :rtmp::IConnect_event_handler> connect_handler(
new Connect_event_handler(neuray, scope.get()));

rtmp_server->install(connect_handler.get());

// Start RTMP server
rtmp_server->start("0.0.0.0:1935");

// Run both servers for fixed time interval
sleep_seconds(30);
http_server->shutdown();
rtmp_server->shutdown();

}

int main(int argc, charx* argv[])

{

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 305

20 Source code for examples 20.19 example_rtmp_server.cpp

// Collect command line parameters
if(argc '= 5) {
std::cerr << "Usage: example_rtmp_server <swf_file> <scene_file> <mdl_path> <port>"
<< std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const charx swf_file = argv[1];
const char* scene_file = argv[2];
const char* mdl_path = argv[3];
const char* port = argv[4];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Set up the scene
prepare_rendering(neuray.get(), scene_file);

// Serve video stream via RTMP server
run_http_and_rtmp_server(neuray.get(), port, swf_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 306

20 Source code for examples 20.20 example_rtmp_server.mxml

20.20 example_rtmp_server.mxml

<?xml version="1.0" encoding="utf-8"?>

<l--
/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.
***************************************'k*************************************/

-—>

<mx :Application
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="horizontal"
initialize="init()" xmlns:local="*">
<mx:Script>
<! [CDATA|
import mx.core.Application;

public function init():void {
vidplayer.makeConnection("rtmp://" + getHost());
}

public function getHost():String
var location:String = Application.application.url;
var components:Array = location.split("/");
if (components.length < 3)
return "localhost";
var host_port:Array = components[2].split(":");
if (host_port.length <= 1)
return "localhost";
return host_port[0];
}
11>

</mx:Script>

<!-- refer to the actionscript object -->

<local:example_rtmp_server_actionscript includeInlLayout="true" id="vidplayer" width="1024" height="7
</mx:Application>

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 307

20 Source code for examples 20.21 example_rtmp_server_actionscript.as

20.21 example_rtmp_server_actionscript.as

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
* Germany. All rights reserved
***/

package {
import flash.events.MouseEvent;
import flash.events.NetStatusEvent;
import flash.events.SecurityErrorEvent;
import flash.media.Video;
import flash.net.NetConnection;
import flash.net.NetStream;
import mx.core.Application;
import mx.core.UIComponent;

public class example_rtmp_server_actionscript extends UIComponent {
private var streamName:String = "example_rtmp_server";
public var connection:NetConnection = null;
private var video:Video = null;
private var mystream:NetStream = null;
private var client:0Object = null;
private var mouseButton:Boolean = false;
private var mousePosX:int 9;
private var mousePosY:int 9;

public function example_rtmp_server_actionscript() {

super();

this.addEventListener(MouseEvent.MOUSE_DOWN, this.onMouseDown);
}

public function makeConnection(url:String):void {
if (connection != null) {
mystream = null;
connection.close();
} else {
connection = new NetConnection();
}
connection.addEventListener (NetStatusEvent.NET_STATUS, netStatusHandler);
connection.addEventListener(SecurityErrorEvent.SECURITY_ERROR, securityErrorHandler);
var args:Object = new Object();
args["resolution_x"] = floor16(this.width).toString();
args["resolution_y"] = floor16(this.height).toString();
connection.connect(url,args);

private function floor16(val:int):int {
return int(val/16) * 16;
}

public function closeConnection():void {
if (connection != null) {
mystream = null;
connection.close();

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 308

20 Source code for examples 20.21 example_rtmp_server_actionscript.as

private function netStatusHandler(event:NetStatusEvent):void
switch (event.info.code) {

case "NetConnection.Connect.Success":
connectStream();
break;

case "NetStream.Play.StreamNotFound":
trace("Stream not found: " + streamName);
break;

private function securityErrorHandler(event:SecurityErrorEvent):void {
trace("securityErrorHandler: " + event);

}

private function connectStream():void {
mystream = new NetStream(connection);
mystream.addEventListener (NetStatusEvent .NET_STATUS, netStatusHandler);
if (video == null) {
video = new Video(this.width, this.height);
video.smoothing = true;
}
video.attachNetStream(mystream);
addChild(video);
mystream.play(streamName) ;

public function onMouseDown(event: MouseEvent):void {

var x: int = event.stageX - (event.target as UIComponent).parent.Xx;

var y: int = event.stageY - (event.target as UIComponent).parent.y;

mousePosX X;

mousePosY v,

Application.application.addEventListener (MouseEvent.MOUSE_UP, this.onMouseUp);
Application.application.addEventListener (MouseEvent.MOUSE_MOVE, this.onMouseMove);

mouseButton = true;

public function onMouseUp(event: MouseEvent):void {
if (mouseButton) {
mouseButton = false;
Application.application.removeEventListener(MouseEvent.MOUSE_UP, this.onMouseUp);
Application.application.removeEventListener(MouseEvent.MOUSE_MOVE, this.onMouseMove);

}
}

public function onMouseMove(event: MouseEvent) :void
{
var x: int event.stageX - (event.target as UIComponent).parent.x;
var y: int event.stageY - (event.target as UIComponent).parent.y;
if (mouseButton && connection && connection.connected && mystream) {
var diff_x:int = x-mousePosX;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 309

20 Source code for examples 20.21 example_rtmp_server_actionscript.as

var diff_y:int = y-mousePosY;
var args:Object = new Object();
if (diff_x !'= @) args["pan_x"]
if (diff_y != @) args|["pan_y"]
if (diff_x || diff_y) {
// For demonstration purposes also send a double..
args["pan_xd"] = (diff_x < @) ? diff_x - ©.1 : diff_x + 0.1
// ..and some bool
args["going_right"] = diff_x > @ ? true : false;
connection.call("moveCamera",null,args);

diff_x;
-diff_y;

}

mousePosX = Xx;

mousePosY = y;
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 310

20 Source code for examples 20.22 example_scene.cpp

20.22 example_scene.cpp

/**
* Copyright 2024 NVIDIA Corporation. All rights reserved.

***/
#include <iostream>
#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

const mi::Uint32 cube_n_points = 8;
const mi::Uint32 cube_n_normals = 6;
const mi::Uint32 cube_n_uvs = 4;
const mi::Uint32 cube_n_triangles = 12;

mi::Float32_3 cube_points[cube_n_points] = {
mi::Float32_3(-0.5, -0.5, -8.5),

mi::Float32_3(-0.5, -08.5, ©.5),
mi::Float32_3(-0.5, 0.5, -0.5),
mi::Float32_3(-6.5, 0.5, 0.5),
mi::Float32_3(0.5, -0.5, -08.5),
mi::Float32_3(0.5, -0.5, 0.5),
mi::Float32_3(0.5, 0.5, -8.5),
mi::Float32_3(6.5, 0.5, 0.5) };

mi::Float32_3 cube_normals[cube_n_normals] = {

mi::Float32_3(0.8, 0.0, -1.9),
mi::Float32_3(0.0, -1.0, 0.9),
mi::Float32_3(-1.8, 0.6, 0.0),
mi::Float32_3(0.8, 0.0, 1.90),
mi::Float32_3(0.8, 1.0, 0.9),
mi::Float32_3(1.0, 0.8, 0.9) };

mi::Float32_2 cube_uvs[cube_n_uvs] = {

mi::Float32_2(0.8, 0.8),
mi::Float32_2(1.8, 0.8),
mi::Float32_2(0.8, 1.8),
mi::Float32_2(1.0, 1.0) };

mi::neuraylib::Triangle_point_indices cube_mesh_connectivity[cube_n_triangles] = {

mi::neuraylib::Triangle_point_indices(©, 2, 6),
mi::neuraylib::Triangle_point_indices(6, 4, 0),
mi::neuraylib::Triangle_point_indices(©, 4, 5),
mi::neuraylib::Triangle_point_indices(5, 1, 90),
mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 90),
mi::neuraylib::Triangle_point_indices(1, 5, 7),
mi::neuraylib::Triangle_point_indices(7, 3, 1),
mi::neuraylib::Triangle_point_indices(2, 3, 7),
mi::neuraylib::Triangle_point_indices(7, 6, 2),
mi::neuraylib::Triangle_point_indices(4, 6, 7),

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 3M

20 Source code for examples 20.22 example_scene.cpp

mi::neuraylib::Triangle_point_indices(7, 5, 4) };

mi::neuraylib::Triangle_point_indices cube_normal_connectivity[cube_n_triangles] = {

mi::neuraylib::Triangle_point_indices(©, 0, 0),
mi::neuraylib::Triangle_point_indices(©, ©, 0),
mi::neuraylib::Triangle_point_indices(1, 1, 1),
mi::neuraylib::Triangle_point_indices(1, 1, 1),
mi::neuraylib::Triangle_point_indices(2, 2, 2),
mi::neuraylib::Triangle_point_indices(2, 2, 2),
mi::neuraylib::Triangle_point_indices(3, 3, 3),
mi::neuraylib::Triangle_point_indices(3, 3, 3),
mi::neuraylib::Triangle_point_indices(4, 4, 4),
mi::neuraylib::Triangle_point_indices(4, 4, 4),
mi::neuraylib::Triangle_point_indices(5, 5, 5),
mi::neuraylib::Triangle_point_indices(5, 5, 5) };

mi::neuraylib::Triangle_point_indices cube_uv_connectivity[cube_n_triangles] = {

mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 0),
mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 0),
mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 90),
mi::neuraylib::Triangle_point_indices(6, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 90),
mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 90),
mi::neuraylib::Triangle_point_indices(©, 1, 3),
mi::neuraylib::Triangle_point_indices(3, 2, 9) };

const mi::Uint32 ground_n_points 4
const mi::Uint32 ground_n_normals 1
const mi::Uint32 ground_n_uvs = 4;
const mi::Uint32 ground_n_triangles = 2

mi::Float32_3 ground_points[ground_n_points] = {
mi::Float32_3(-2.8, 0.8, -2.9),
mi::Float32_3(-2.8, 0.6, 2.0),
mi::Float32_3(2.9, 0.8, 2.8),
mi::Float32_3(2.9, 0.9, -2.8) };

mi::Float32_3 ground_normals[ground_n_normals] = {
mi::Float32_3(0.0, 1.8, 0.8) };

mi::Float32_2 ground_uvs[ground_n_uvs] = {
mi::Float32_2(0.8, 1.8),
mi::Float32_2(0.8, 0.89),
mi::Float32_2(1.8, 0.8),
mi::Float32_2(1.8, 1.0) };

mi::neuraylib::Triangle_point_indices ground_mesh_connectivity[ground_n_triangles] = {
mi::neuraylib::Triangle_point_indices(©, 1, 2),
mi::neuraylib::Triangle_point_indices(2, 3, 9) };

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 312

20 Source code for examples 20.22 example_scene.cpp

mi::neuraylib::Triangle_point_indices ground_normal_connectivity[ground_n_triangles] = {
mi::neuraylib::Triangle_point_indices(©, ©, 90),
mi::neuraylib::Triangle_point_indices(©, ©, 0) };

mi::neuraylib::Triangle_point_indices ground_uv_connectivity[ground_n_triangles] = {
mi::neuraylib::Triangle_point_indices(©, 1, 2),
mi::neuraylib::Triangle_point_indices(2, 3, 90) };

void create_flag(mi::neuraylib::IAttribute_set* attribute_set, const char* name, bool value)
{
mi::base::Handle<mi::IBoolean> attribute(
attribute_set->create_attribute<mi::IBoolean>(name, "Boolean"));
attribute->set_value(value);

}

mi::neuraylib::IScene* create_scene(
mi::neuraylib::INeuray* neuray,
mi::neuraylib::ITransaction* transaction)
{
mi::base::Handle<mi: :neuraylib::IMd1_factory> mdl_factory(
neuray->get_api_component<mi: :neuraylib::IMd1_factory>());
mi: :base::Handle<mi: :neuraylib::IValue_factory> value_factory(
mdl_factory->create_value_factory(transaction));
mi: :base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
mdl_factory->create_expression_factory(transaction));

// Import the MDL module "main"

mi::base::Handle<mi: :neuraylib: :IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi::base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction, "file:${shader}/main.mdl"));

check_success(import_result->get_error_number() == 0);

// Create the options "options"

mi: :base::Handle<mi: :neuraylib: :IOptions> options(
transaction->create<mi: :neuraylib::IOptions>("Options"));

transaction->store(options.get(), "options");

// Create the MDL material instance "yellow_material" used by "cube_instance"
mi::base::Handle<mi: :neuraylib::IValue> value(
value_factory->create_color(0.942f, 0.807216f, 0.33441f));
mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_constant(value.get()));
mi::base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());
arguments->add_expression("tint", expression.get());
mi::base::Handle<const mi::neuraylib::IFunction_definition> definition(
transaction->access<mi: :neuraylib::IFunction_definition>(
"mdl::main: :diffuse_material(color)"));
mi: :base::Handle<mi: :neuraylib::IFunction_call> material(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 313

20 Source code for examples 20.22 example_scene.cpp

definition->create_function_call(arguments.get()));
check_success(material.get());
transaction->store(material.get(), "yellow_material");

// Create the MDL material instance "grey_material" used by "ground_instance"

mi::base::Handle<mi: :neuraylib::IValue> value(
value_factory->create_color(0.306959f, 0.306959f, 0.306959f));

mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_constant(value.get()));

mi: :base::Handle<mi: :neuraylib: :IExpression_list> arguments(
expression_factory->create_expression_list());

arguments->add_expression("tint", expression.get());

mi::base::Handle<const mi::neuraylib::IFunction_definition> definition(
transaction->access<mi: :neuraylib::IFunction_definition>(

"mdl::main::diffuse_material(color)"));

mi: :base::Handle<mi: :neuraylib::IFunction_call> material(
definition->create_function_call(arguments.get()));

check_success(material.get());

transaction->store(material.get(), "grey_material");

// Create the MDL material instance "white_light" used by "light"

mi::base::Handle<mi: :neuraylib::IValue> value(
value_factory->create_color(1000.0f, 1000.0f, 1000.0f));

mi::base::Handle<mi: :neuraylib: :IExpression> expression(
expression_factory->create_constant(value.get()));

mi: :base::Handle<mi: :neuraylib::IExpression_list> arguments(
expression_factory->create_expression_list());

arguments->add_expression("tint", expression.get());

mi::base::Handle<const mi::neuraylib::IFunction_definition> definition(
transaction->access<mi: :neuraylib::IFunction_definition>(

"mdl::main: :diffuse_light(color)"));

mi: :base::Handle<mi: :neuraylib::IFunction_call> material(
definition->create_function_call(arguments.get()));

check_success(material.get());

transaction->store(material.get(), "white_light");

// Create the triangle mesh "cube"

mi: :base::Handle<mi: :neuraylib::ITriangle_mesh> mesh(
transaction->create<mi: :neuraylib::ITriangle_mesh>("Triangle_mesh"));

create_flag(mesh.get(), "visible", true);

create_flag(mesh.get(), "reflection_cast", true);
create_flag(mesh.get(), "reflection_recv", true);
create_flag(mesh.get(), "refraction_cast", true);
create_flag(mesh.get(), "refraction_recv", true);
create_flag(mesh.get(), "shadow_cast", true);
create_flag(mesh.get(), "shadow_recv", true);

// Set point data and mesh connectivity

mesh->reserve_points(cube_n_points);

for(mi::Uint32 i = ©; i < cube_n_points; ++i)
mesh->append_point(cube_points[i]);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 314

20 Source code for examples 20.22 example_scene.cpp

mesh->reserve_triangles(cube_n_triangles);
for(mi::Uint32 i = 0; i < cube_n_triangles; ++i)
mesh->append_triangle(cube_mesh_connectivity[i]);

// Set normal data and normal connectivity

mi::base::Handle<mi: :neuraylib::ITriangle_connectivity> normal_connectivity(
mesh->create_connectivity());

for(mi::Uint32 i = 0; i < cube_n_triangles; ++i)
normal_connectivity->set_triangle_indices(

mi::neuraylib::Triangle_handle(i), cube_normal_connectivity[i]);

mi: :base::Handle<mi: :neuraylib: :IAttribute_vector> normals(
normal_connectivity->create_attribute_vector(mi::neuraylib::ATTR_NORMAL));

for(mi::Uint32 i = ©; i < cube_n_normals; ++i)
normals->append_vector3(cube_normals[i]);

check_success(normal_connectivity->attach_attribute_vector(normals.get()) == 0);
check_success(mesh->attach_connectivity(normal_connectivity.get()) == 0);

// Set uv data and uv connectivity
mi::base::Handle<mi: :neuraylib::ITriangle_connectivity> uv_connectivity(
mesh->create_connectivity());
for(mi::Uint32 i = @; i < cube_n_triangles; ++i)
uv_connectivity->set_triangle_indices(
mi::neuraylib::Triangle_handle(i), cube_uv_connectivity[i]);
mi: :base::Handle<mi: :neuraylib: :IAttribute_vector> uvs(
uv_connectivity->create_attribute_vector(mi::neuraylib::ATTR_TEXTURE, 2));
for(mi::Uint32 i = 0; i < cube_n_uvs; ++1i)
uvs->append_float32(&cube_uvs[i][@], 2);
check_success(uv_connectivity->attach_attribute_vector(uvs.get())
check_success(mesh->attach_connectivity(uv_connectivity.get()) ==

== 0);
9);

transaction->store(mesh.get(), "cube");

// Create the instance "cube_instance" referencing "cube"

mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

check_success(instance->attach("cube") == 0);

mi::Float64_4_4 matrix(1.6f);

matrix.translate(1.3f, -0.5f, 1.0f);

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IRef> material(
instance->create_attribute<mi: :IRef>("material", "Ref"));

check_success(material->set_reference("yellow_material") == 0);

transaction->store(instance.get(), "cube_instance");

// Create the triangle mesh "ground"

mi: :base::Handle<mi: :neuraylib::ITriangle_mesh> mesh(
transaction->create<mi: :neuraylib::ITriangle_mesh>("Triangle_mesh"));

create_flag(mesh.get(), "visible", true);

create_flag(mesh.get(), "reflection_cast", true);

create_flag(mesh.get(), "reflection_recv", true);

create_flag(mesh.get(), "refraction_cast", true);

create_flag(mesh.get(), "refraction_recv", true);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 315

20 Source code for examples 20.22 example_scene.cpp

create_flag(mesh.get(), "shadow_cast", true);
create_flag(mesh.get(), "shadow_recv", true);

// Set point data and mesh connectivity

mesh->reserve_points(ground_n_points);

for(mi::Uint32 i = ©; i < ground_n_points; ++1i)
mesh->append_point(ground_points[i]);

mesh->reserve_triangles(ground_n_triangles);

for(mi::Uint32 i = 0; i < ground_n_triangles; ++i)
mesh->append_triangle(ground_mesh_connectivity[i]);

// Set normal data and normal connectivity
mi::base::Handle<mi: :neuraylib::ITriangle_connectivity> normal_connectivity(
mesh->create_connectivity());
for(mi::Uint32 i = 0; i < ground_n_triangles; ++i)
normal_connectivity->set_triangle_indices(
mi::neuraylib::Triangle_handle(i), ground_normal_connectivity[i]);
mi::base::Handle<mi: :neuraylib: :IAttribute_vector> normals(
normal_connectivity->create_attribute_vector(mi::neuraylib::ATTR_NORMAL));
for(mi::Uint32 i = 0; i < ground_n_normals; ++1i)
normals->append_vector3(ground_normals[i]);
check_success(normal_connectivity->attach_attribute_vector(normals.get()) == 0);
check_success(mesh->attach_connectivity(normal_connectivity.get()) == 0);

// Set uv data and uv connectivity
mi::base::Handle<mi: :neuraylib::ITriangle_connectivity> uv_connectivity(
mesh->create_connectivity());
for(mi::Uint32 i = 0; i < ground_n_triangles; ++i)
uv_connectivity->set_triangle_indices(
mi::neuraylib::Triangle_handle(i), ground_uv_connectivity[i]);
mi: :base::Handle<mi: :neuraylib: :IAttribute_vector> uvs(
uv_connectivity->create_attribute_vector(mi::neuraylib::ATTR_TEXTURE, 2));
for(mi::Uint32 i = ©; i < ground_n_uvs; ++i)
uvs->append_float32(&ground_uvs[i][@], 2);
check_success(uv_connectivity->attach_attribute_vector(uvs.get())
check_success(mesh->attach_connectivity(uv_connectivity.get()) ==

== 0);
9),;

transaction->store(mesh.get(), "ground");

// Create the instance "ground_instance" referencing "ground"
mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));
check_success(instance->attach("ground") == 0);
mi::base::Handle<mi: :IRef> material(
instance->create_attribute<mi: :IRef>("material", "Ref"));
check_success(material->set_reference("grey_material") == 0);
transaction->store(instance.get(), "ground_instance");

// Create the light "light"

mi::base::Handle<mi: :neuraylib::ILight> light(
transaction->create<mi: :neuraylib::ILight>("Light"));

create_flag(light.get(), "shadow_cast", true);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 316

20 Source code for examples 20.22 example_scene.cpp

mi: :base::Handle<mi: :IRef> material(
light->create_attribute<mi: :IRef>("material”, "Ref"));

check_success(material->set_reference("white_light") == 0);

transaction->store(light.get(), "light");

// Create the instance "light_instance" referencing "light"

mi: :base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

check_success(instance->attach("light") == 0);

mi::Float64_4_4 matrix(1.0f);

matrix.translate(5.1f, -7.3f, -1.6f);

instance->set_matrix(matrix);

transaction->store(instance.get(), "light_instance");

// Create the camera "camera"
mi::base::Handle<mi: :neuraylib::ICamera> camera(
transaction->create<mi: :neuraylib::ICamera>("Camera"));
camera->set_focal(50.0f);
camera->set_aperture(44.0f);
camera->set_aspect(1.33333f);
camera->set_resolution_x(512);
camera->set_resolution_y(384);
camera->set_clip_min(0.1);
camera->set_clip_max(1000);
transaction->store(camera.get(), "camera");

// Create the instance "camera_instance" referencing "camera"
mi: :base::Handle<mi: :neuraylib::IInstance> instance(

transaction->create<mi: :neuraylib::IInstance>("Instance"));
check_success(instance->attach("camera") == 0);
mi::Float64_4_4 matrix(

0.68826f, 0.37107f, -0.623382f, 0.0f,

0.00000f, 0.85929f, ©0.511493f, 0.0f,

0.72546f, -0.35204f, ©.591414f, 06.0f,

0.00000f, 0.00000f, -6.256200f, 1.0f);
instance->set_matrix(matrix);
transaction->store(instance.get(), "camera_instance");

// Create the group "rootgroup" containing all instances
mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->create<mi: :neuraylib::IGroup>("Group"));

check_success(group->attach("cube_instance") == 0);
check_success(group->attach("ground_instance") == 0);
check_success(group->attach("light_instance") == 0);
check_success(group->attach("camera_instance") == 0);
transaction->store(group.get(), "rootgroup");

// Create the scene object itself and return it.
mi::neuraylib::IScene* scene = transaction->create<mi: :neuraylib::IScene>("Scene");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 317

20 Source code for examples 20.22 example_scene.cpp

scene->set_rootgroup("rootgroup");
scene->set_camera_instance("camera_instance");
scene->set_options("options");

return scene;

}

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)

{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(

neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());

check_success(rc.is_valid_interface());
check_success(rc->add_mdl_path(mdl_path)
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO and Iray Photoreal plugins.
mi: :base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Create the scene
mi: :base::Handle<mi: :neuraylib::IScene> scene(create_scene(neuray, transaction.get()));
transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi::neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 9;

// Create the render target and render the scene

mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());

mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 318

20 Source code for examples 20.22 example_scene.cpp

check_success(render_context->render(transaction.get(), render_target.get(), 0) >=90);

// Write the image to disk

mi::base::Handle<mi: :neuraylib::IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_scene.png”, canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(argc '= 2) {
std::cerr << "Usage: example_scene <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 319

20 Source code for examples 20.23 example_shared.h

20.23 example_shared.h

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#ifndef EXAMPLE_SHARED_H
#define EXAMPLE_SHARED_H

#include <cstdio>
#include <cstdlib>

#include <mi/neuraylib.h>

#ifdef MI_PLATFORM_WINDOWS
#include <mi/base/miwindows.h>
#else

#include <dlfcn.h>

#include <unistd.h>

#endif

#include "authentication.h"
void* g_dso_handle = 0;
void keep_console_open() {

#ifdef MI_PLATFORM_WINDOWS
if(IsDebuggerPresent()) {

fprintf(stderr, "Press enter to continue . . . \n");
fgetc(stdin);
}
#endif // MI_PLATFORM_WINDOWS
}
#define check_success(expr) \
do { \
if(!'(expr)) { \
fprintf(stderr, "Error in file %s, line %u: \"%s\".\n", __FILE__, __LINE__, #expr); \

keep_console_open(); \
exit(EXIT_FAILURE); \
FA
} while(false)

void check_start_success(mi::Sint32 result)
{
if(result == 0)
return;
fprintf(stderr, "mi::neuraylib::INeuray::start() failed with return code %d.\n", result);
fprintf(stderr, "Typical failure reasons are related to authentication, see the\n");
fprintf(stderr, "documentation of this method for details.\n");
keep_console_open();
exit(EXIT_FAILURE);
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 320

20 Source code for examples 20.23 example_shared.h

#ifdef MI_PLATFORM_WINDOWS
#ifdef UNICODE

#define FMT_LPTSTR "%ls"
#else // UNICODE

#define FMT_LPTSTR "%s"
#endif // UNICODE

#endif // MI_PLATFORM_WINDOWS

mi::neuraylib::INeuray* load_and_get_ineuray(const char* filename = @)
{
if(!filename)
filename = "libneuray" MI_BASE_DLL_FILE_EXT;
#ifdef MI_PLATFORM_WINDOWS
void* handle = LoadLibraryA((LPSTR) filename);
if('handle) {
LPTSTR buffer = 0;
LPTSTR message = TEXT("unknown failure");
DWORD error_code = GetlLastError();
if(FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, @, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &buffer, 8, 0))
message = buffer;
fprintf(stderr, "Failed to load library (%u): " FMT_LPTSTR, error_code, message);
if(buffer)
LocalFree(buffer);
return 0;
}
void* symbol = GetProcAddress((HMODULE) handle, "mi_factory");
if(!symbol) {
LPTSTR buffer = 0;
LPTSTR message = TEXT("unknown failure");
DWORD error_code = GetlLastError();
if(FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, 0, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &buffer, 8, 0))
message = buffer;
fprintf(stderr, "GetProcAddress error (%u): " FMT_LPTSTR, error_code, message);
if(buffer)
LocalFree(buffer);
return 0;
}
#else // MI_PLATFORM_WINDOWS
void* handle = dlopen(filename, RTLD_LAZY);
if('handle) {
fprintf(stderr, "%s\n", dlerror());
return 0;
}
void* symbol = dlsym(handle, "mi_factory");
if(!symbol) {
fprintf(stderr, "%s\n", dlerror());
return 0;
}
#endif // MI_PLATFORM_WINDOWS
g_dso_handle = handle;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 321

20 Source code for examples 20.23 example_shared.h

mi::neuraylib::INeuray* neuray = mi::neuraylib::mi_factory<mi::neuraylib::INeuray>(symbol);
if(!neuray)
{
mi: :base::Handle<mi: :neuraylib::IVersion> version(
mi::neuraylib::mi_factory<mi::neuraylib::IVersion>(symbol));
if(!version)
fprintf(stderr, "Error: Incompatible library.\n");
else
fprintf(stderr, "Error: Library version %s does not match header version %s.\n",
version->get_product_version(), MI_NEURAYLIB_PRODUCT_VERSION_STRING);
return 0;

}

check_success(authenticate(neuray) == 0);
return neuray;

}

bool unload()
{
#ifdef MI_PLATFORM_WINDOWS
int result = FreeLibrary((HMODULE)g_dso_handle);
if(result == 0) {
LPTSTR buffer = 0;
LPTSTR message = TEXT("unknown failure");
DWORD error_code = GetlLastError();
if(FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, 0, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &buffer, 0, 0))
message = buffer;
fprintf(stderr, "Failed to unload library (%u): " FMT_LPTSTR, error_code, message);
if(buffer)
LocalFree(buffer);
return false;
}
return true;
#else
int result = dlclose(g_dso_handle);
if(result != @) {
fprintf(stderr, "%s\n", dlerror());
return false;
}
return true;
#endif
}

void sleep_seconds(mi::Float32 seconds)
{
#ifdef MI_PLATFORM_WINDOWS
Sleep(static_cast<DWORD>(seconds * 1000));
#else
usleep(static_cast<useconds_t>(seconds * 1000000));
#endif

}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 322

20 Source code for examples 20.23 example_shared.h

#ifdef MI_PLATFORM_WINDOWS
#define snprintf _snprintf
#endif

#endif // MI_EXAMPLE_SHARED_H

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 323

20 Source code for examples 20.24 example_start_shutdown.cpp

20.24 example_start_shutdown.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>
#include "example_shared.h"

int main(int /*argc */, char* /*argv*/[])
{
// Get the INeuray interface in a suitable smart pointer.
mi: :base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
if(!neuray.is_valid_interface()) {
fprintf(stderr, "Error: The neuray library failed to load and to provide "
"the mi::neuraylib::INeuray interface.\n");
keep_console_open();
return EXIT_FAILURE;
}

// Print library version information.
mi: :base::Handle<const mi::neuraylib::IVersion> version(
neuray->get_api_component<const mi::neuraylib::IVersion>());

fprintf(stderr, "MDL SDK header version = %s\n",
MI_NEURAYLIB_PRODUCT_VERSION_STRING);
fprintf(stderr, "MDL SDK library product name = %s\n", version->get_product_name());

fprintf(stderr, "MDL SDK library product version = %s\n", version->get_product_version());
fprintf(stderr, "MDL SDK library build number = %s\n", version->get_build_number());
fprintf(stderr, "MDL SDK library build date = %s\n", version->get_build_date());
fprintf(stderr, "MDL SDK library build platform = %s\n", version->get_build_platform());
fprintf(stderr, "MDL SDK library version string = \"%s\"\n", version->get_string());

mi::base::Uuid neuray_id_libraray = version->get_neuray_iid();
mi::base::Uuid neuray_id_interface = mi::neuraylib::INeuray::IID();

fprintf(stderr, "MDL SDK header interface ID
neuray_id_interface.m_id1,
neuray_id_interface.m_id2,
neuray_id_interface.m_id3,
neuray_id_interface.m_id4);

fprintf(stderr, "MDL SDK library interface ID
neuray_id_libraray.m_id1,
neuray_id_libraray.m_id2,
neuray_id_libraray.m_id3,
neuray_id_libraray.m_id4);

<%2X, B2x, %2X, %2x>\n",

<%2X, %2X, %2X, %2x>\n\n",

version = 0;
// configuration settings go here, none in this example

// After all configurations, neuray is started. A return code of @ implies success. The start
// can be blocking or non-blocking. Here the blocking mode is used so that you know that neuray

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 324

20 Source code for examples 20.24 example_start_shutdown.cpp

// is up and running after the function call. You can use a non-blocking call to do other tasks
// in parallel and check with

/1

// neuray->get_status() == mi::neuraylib::INeuray::STARTED

/1

// if startup is completed.

mi::Sint32 result = neuray->start(true);

check_start_success(result);

// scene graph manipulations and rendering calls go here, none in this example.
// Shutting down in blocking mode. Again, a return code of @ indicates success.
check_success(neuray->shutdown(true) == 0);

neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 325

20 Source code for examples 20.25 example_subdivision_surface.cpp

20.25 example_subdivision_surface.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

#include <iostream>

mi::neuraylib: :ISubdivision_surface* create_cube(mi::neuraylib::ITransaction* transaction)
{

const mi::Size n_points = 8;

const mi::Size n_quads = 6;

mi::Float32_3 cube_points[n_points] = {
mi::Float32_3(-0.5, -0.5, -8.5),

mi::Float32_3(0.5, -0.5, -0.5),
mi::Float32_3(©.5, 0.5, -0.5),
mi::Float32_3(-8.5, 0.5, -0.5),
mi::Float32_3(-08.5, -0.5, 0.5),
mi::Float32_3(0.5, -0.5, 0.5),
mi::Float32_3(©.5, 0.5, 0.5),
mi::Float32_3(-8.5, 0.5, ©0.5) };

mi::Uint32 cube_quads[n_quads][4] = {

{e, 1,5 4},
{4, 5 6, 7},
{7, 6, 2, 31},
{3, 2,1, 0},
{1, 2, 6, 5},
{3,090, 4, 7} };

// Create an empty subdivision surface
mi::neuraylib::ISubdivision_surface* mesh
= transaction->create<mi: :neuraylib::ISubdivision_surface>("Subdivision_surface");

// Create a cube (points and polygons)

mesh->reserve_points(n_points);

for(mi::Uint32 i = 0; i < n_points; ++1i)
mesh->append_point(cube_points[i]);

for(mi::Uint32 i = 0; i < n_quads; ++i)
mesh->add_polygon(4);

// Map vertices of the polygons to points

mi: :base::Handle<mi: :neuraylib::IPolygon_connectivity> mesh_connectivity(
mesh->edit_mesh_connectivity());

for(mi::Uint32 i = 0; i < n_quads; ++i)

mesh_connectivity->set_polygon_indices(mi::neuraylib::Polygon_handle(i)

check_success(mesh->attach_mesh_connectivity(mesh_connectivity.get()) =

, cube_quads[i]);
=9);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 326

20 Source code for examples 20.25 example_subdivision_surface.cpp

// Set crease values to 1.0f on two opposing faces to end up with a cylinder
mi::Float32 crease_values[4] = { 1.0f, 1.06f, 1.0f, 1.0f };
mesh->set_crease_values(mi::neuraylib::Polygon_handle(1), crease_values);
mesh->set_crease_values(mi::neuraylib::Polygon_handle(3), crease_values);

return mesh;

}

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)

{
// Remove the existing cube from the scene. The unrefined control mesh (in red) will take its
// place.

mi: :base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));

group->detach("cube_instance");

group = 0;

// Create the subdivision surface
mi: :base::Handle<mi: :neuraylib::ISubdivision_surface> mesh(create_cube(transaction));

transaction->store(mesh.get(), "mesh");

// Create three instances of the subdivision surface with different materials, approximation
// levels and world-to-object transformation matrices.
const char* names[3] = { "instanceB", "instancel1", "instance2" };
const char* materials[3] = { "red_material", "green_material", "blue_material" };
mi::Float32 approximation_level[3] { 0.0f, 1.0f, 2.0 };
const mi::Float32_3 translation[3] {

mi::Float32_3(1.1f, -0.5f, 0.9f),

mi::Float32_3(-0.9f, -0.5f, 0.9f),

mi::Float32_3(-0.9f, -0.5f, -1.1f)

}s

for(mi::Size i = 0; 1 < 3; ++i) {

mi::base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

instance->attach("mesh");

mi::Float64_4_4 matrix(1.0);
matrix.translate(translation[i]);
matrix.rotate(0.0, 0.25 * MI_PI_2, 0.0);
instance->set_matrix(matrix);

mi::base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));

visible->set_value(true);

mi::base::Handle<mi: :IRef> material(
instance->create_attribute<mi: :IRef>("material", "Ref"));
material->set_reference(materials[i]);

mi::base::Handle<mi: :IStructure> approx(
instance->create_attribute<mi: :IStructure>("approx", "Approx"));
mi::base::Handle<mi: :ISint8> method(approx->get_value<mi::ISint8>("method"));

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 327

20 Source code for examples 20.25 example_subdivision_surface.cpp

method->set_value(0);
mi::base::Handle<mi: :IFloat32> const_u(approx->get_value<mi::IFloat32>("const_u"));
const_u->set_value(approximation_level[i]);

transaction->store(instance.get(), names[i]);

mi::base::Handle<mi: :neuraylib: :IGroup> group(
transaction->edit<mi::neuraylib::IGroup>(rootgroup));
group->attach(names[i]);
}
}

void configuration(mi::neuraylib::INeuray* neuray, const charx mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi: :neuraylib: :IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == @);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == 0);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi::neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi: :base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add three instances of a subdivision surface with different approximation levels
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object
mi: :base::Handle<mi: :neuraylib: :IScene> scene(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 328

20 Source code for examples 20.25 example_subdivision_surface.cpp

transaction->create<mi::neuraylib::IScene>("Scene"));
scene->set_rootgroup(import_result->get_rootgroup());
scene->set_options(import_result->get_options());
scene->set_camera_instance(import_result->get_camera_inst());
transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi: :base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi::base::Handle<mi: :neuraylib::IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_subdivision_surface.png", canvas.get());

transaction->commit();

int main(int argc, charx* argv[])
{
// Collect command line parameters
if(arge != 2) {
std::cerr << "Usage: example_subdivision_surface <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi::neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 329

20 Source code for examples 20.25 example_subdivision_surface.cpp

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 330

20 Source code for examples 20.26 example_triangle_mesh.cpp

20.26 example_triangle_mesh.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include

#include
#include

#include
#include
#include

<mi/neuraylib.h>

"example_shared.h"
"example_render_target_simple.h"

<iostream>
<map>
<vector>

mi::neuraylib::ITriangle_mesh* create_tetrahedron(mi::neuraylib::ITransaction* transaction)

{

// Some constants for the vertices, normals, and faces of the tetrahedron
mi::Float32_3 tetra_points[4] = {

mi::Float32_3(-8.5, -0.5, -0.5),

mi::Float32_3(0.5, -0.5, -0.5),

mi::Float32_3(-0.5, 0.5, -0.5),

mi::Float32_3(-8.5, -0.5, ©0.5) };

mi::Float32_3 tetra_normals[4] = {
mi::Float32_3(-0.577f, -0.577f, -0.577f),
mi::Float32_3(©.89f, -@.20f, -0.20f),
mi::Float32_3(-0.206f, 0.89f, -0.20f),
mi::Float32_3(-0.20f, -0.20f, 0.89f) };

mi::neuraylib::Triangle_point_indices tetra_triangles[4] = {
mi::neuraylib::Triangle_point_indices(0, 2, 1),

mi::neuraylib::Triangle_point_indices(6, 1, 3)
mi::neuraylib::Triangle_point_indices(0, 3, 2),
mi::neuraylib::Triangle_point_indices(1, 2, 3)

’

I

// Create an empty triangle mesh
mi::neuraylib::ITriangle_mesh* mesh

= transaction->create<mi::neuraylib::ITriangle_mesh>("Triangle_mesh");
check_success(mesh);

// Create a tetrahedron

mesh->reserve_points(4);

for(mi::Uint32 i = 0; i < 4; ++i)
mesh->append_point(tetra_points[i]);

mesh->reserve_triangles(4);

for(mi::Uint32 i = 0; i < 4; ++i)
mesh->append_triangle(tetra_triangles[i]);

// Use the mesh connectivity for normal vectors
mi::base::Handle<mi: :neuraylib::ITriangle_connectivity> mesh_connectivity(
mesh->edit_mesh_connectivity());

// Create an attribute vector for the normals

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 331

20 Source code for examples 20.26 example_triangle_mesh.cpp

mi::base::Handle<mi: :neuraylib::IAttribute_vector> normals(
mesh_connectivity->create_attribute_vector(mi::neuraylib::ATTR_NORMAL));
for(mi::Uint32 i = 0; i < 4; ++i)
normals->append_vector3(tetra_normals[i]);
check_success(normals->is_valid_attribute());
check_success(mesh_connectivity->attach_attribute_vector(normals.get()) == 0);
check_success(!'normals->is_valid_attribute());

check_success(mesh->attach_mesh_connectivity(mesh_connectivity.get()) == 0);

return mesh;

struct Edge {
mi::Uint32 v1; // smaller index of the two vertex indices
mi::Uint32 v2; // larger index of the two vertex indices
Edge() : vi1(@), v2(@) {}
Edge(mi::Uint32 p, mi::Uint32 q) : vi(p<qg ? p : q), v2(p<q ?2 q : p) {}
bool operator< (const Edge& e) const { return vl <e.vl || (vl ==e.v]1 && v2 <e.v2); }

|3

void loop_subdivision(mi::neuraylib::ITriangle_mesh* mesh)

{
// Keep the old mesh sizes in local variables. The old mesh will remain in its place as long as
// needed, while new elements are appended or kept in temporary arrays.

mi::Uint32 n = mesh->points_size(); // # points
mi::Uint32 t = mesh->triangles_size(); // # triangles
mi::Uint32 e =t * 3 / 2; // # edges

mesh->reserve_points(n + e);
mesh->reserve_triangles(4 * t);

// Temporary space for smoothed points for the old existing vertices.
std::vector< mi::Float32_3 > smoothed_point(
n, mi::Float32_3(0.0, 0.0, 08.0));

// Valence (i.e., vertex degree) of the old existing vertices.
std::vector< mi::Uint32> valence(n, 0);

// Edge bisection introduces a single new point per edge, but we will in the course of the

// algorithm see the edge twice, once per incident triangle. We store a mapping of edges to new
// vertex indices for simplicity in the following STL map.

std::map< Edge, mi::Uint32> split_vertex;

// Compute, with a loop over all old triangles:

// - valence of the old vertices

// - contribution of 1-ring neighborhood to smoothed old vertices
// (weighting by valence follows later)

// - new vertices on split edges

// - 1:4 split, each triangle is split into 4 triangles

for(mi::Uint32 i = @; i < t; ++i) {
mi::neuraylib::Triangle_point_indices triangle
= mesh->triangle_point_indices(mi::neuraylib::Triangle_handle(1i));

// Increment valence for each vertex

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 332

20 Source code for examples 20.26 example_triangle_mesh.cpp

++ valence[triangle[0]];
++ valence[triangle[1]];
++ valence[triangle[2]];

// Add neighbor vertices to smoothed vertex following triangle orientation. The opposite
// contribution follows from the adjacent triangle.
mi::Float32_3 p;
mesh->point(triangle[0], p);
smoothed_point[triangle[1]] += p;
mesh->point(triangle[1], p);
smoothed_point[triangle[2]] += p;
mesh->point(triangle[2], p);
smoothed_point[triangle[@]] += p;

// Determine new vertices at split edges. Loop over all three edges.
mi::Uint32 new_index[3]; // indices of the three new vertices
for(mi::Uint32 j = 0; j != 3; ++j) {
// Consider the edge from v1 to v2.
mi::Uint32 vB@ = triangle[j 1; // vertex opposite of edge
mi::Uint32 v1 triangle[(j+1)%3]; // vertex that starts the edge
mi::Uint32 v2 = triangle[(j+2)%3]; // vertex that ends the edge
Edge edge(v1, v2);
// Create the new point (or the second half of the contribution) for the split vertex.
mi::Float32_3 p@, p1;
mesh->point(v@, p@); // point opposite of edge
mesh->point(v1, p1); // point that starts the edge
mi::Float32_3 new_point = (p@ + p1 * 3.9) / 8.0;
// Is the split vertex on the edge defined?
std: :map< Edge, mi::Uint32>::iterator split_vertex_pos = split_vertex.find(edge);
if (split_vertex_pos == split_vertex.end()) {
// If not yet defined, create it and a corresponding new vertex in the mesh.
new_index[j] = mesh->append_point(new_point);
split_vertex[edge] = new_index[j];
} else {
// If is defined, add the second half of the new vertex contribution
new_index[j] = split_vertex_pos->second;
mi::Float32_3 q;
mesh->point(new_index[j], q);
mesh->set_point(new_index[j], q + new_point);
}
}

// 1:4 split, each triangle is split into 4 triangles

mesh->append_triangle(

mi::neuraylib::Triangle_point_indices(triangle[0], new_index[2], new_index[1]));
mesh->append_triangle(

mi::neuraylib::Triangle_point_indices(triangle[1], new_index[0], new_index[2]));
mesh->append_triangle(

mi::neuraylib::Triangle_point_indices(triangle[2], new_index[1], new_index[@]));
mesh->set_triangle(mi::neuraylib::Triangle_handle(i),
mi::neuraylib::Triangle_point_indices(new_index[8], new_index[1], new_index[2]));

}

// One loop over all old vertices combines the 1-ring neighborhood of the old vertices stored in

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 333

20 Source code for examples 20.26 example_triangle_mesh.cpp

// the smoothed vertices, weighted by valence, with the old vertices.
for(mi::Uint32 i = 0; i < n; ++1i) {
mi::Float32_3 p;
mesh->point(i, p);
// Weight used to smooth the old vertices.
// (An improved implementation would store the weights in a lookup table.)
mi::Float64 w = 3.6/8.0 + 1.0/4.8 * cos(2.0 * MI_PI / valence[i]);
w=5.0/8.0 -w*w; // final weight: w for 1-ring, 1-w for old vertex
mesh->set_point(i,
(1 - w) *x p+w * smoothed_point[i] / static_cast<mi::Float32>(valence[i]));

// Recompute the normals. They are stored per-point in this example, hence, retrieve them from

// the mesh connectivity.

mi: :base::Handle<mi: :neuraylib::ITriangle_connectivity> mesh_connectivity(
mesh->edit_mesh_connectivity());

mi: :base::Handle<mi: :neuraylib: :IAttribute_vector> normals(
mesh_connectivity->edit_attribute_vector(mi::neuraylib::ATTR_NORMAL));

check_success(normals.is_valid_interface());

normals->reserve(n + e);

// Compute smoothed normal vectors per vertex by averaging adjacent facet normals.
// First reset all old normals and add space for new normals.
mi::Uint32 new_n = mesh->points_size(); // # new points
for(mi::Uint32 i = 0; i < n; ++i)
normals->set_vector3(i, mi::Float32_3(0.0, 0.0, 0.9));
for(mi::Uint32 i = n; i < new_n; ++i)
normals->append_vector3(mi::Float32_3(0.0, 0.0, 0.0));

// Compute, with a loop over all old and all new triangles the normal vectors for each triangle
// and add them to the per-vertex normals.
mi::Uint32 new_t = mesh->triangles_size(); // # new triangles
for(mi::Uint32 i = 0; i < new_t; ++i) {
mi::neuraylib::Triangle_point_indices triangle
= mesh_connectivity->triangle_point_indices(mi::neuraylib::Triangle_handle(i));
mi::Float32_3 p@6, pl1, p2;
mesh->point(triangle[@], p@);
mesh->point(triangle[1], p1);
mesh->point(triangle[2], p2);
mi::Float32_3 v = cross(p1 - p@, p2 - po@);
v.normalize();
normals->set_vector3(triangle[0],
v + mi::Float32_3(normals->get_vector3(triangle[@])));
normals->set_vector3(triangle[1],
v + mi::Float32_3(normals->get_vector3(triangle[1])));
normals->set_vector3(triangle[2],
v + mi::Float32_3(normals->get_vector3(triangle[2])));
}
// Renormalize all normals
for(mi::Uint32 i = 0; i < new_n; ++i) {
mi::Float32_3 v = normals->get_vector3(i);
v.normalize();
normals->set_vector3(i, v);

}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 334

20 Source code for examples 20.26 example_triangle_mesh.cpp

// Reattach the normal vector and the mesh connectivity
mesh_connectivity->attach_attribute_vector(normals.get());
mesh->attach_mesh_connectivity(mesh_connectivity.get());

}

void setup_scene(mi::neuraylib::ITransaction* transaction, const char* rootgroup)

{
// Create the red tetrahedron
mi: :base::Handle<mi: :neuraylib::ITriangle_mesh> mesh_red(create_tetrahedron(transaction));
transaction->store(mesh_red.get(), "mesh_red");

// Create the instance for the red tetrahedron

mi: :base::Handle<mi: :neuraylib::IInstance> instance(
transaction->create<mi: :neuraylib::IInstance>("Instance"));

instance->attach("mesh_red");

// Set the transformation matrix, the visible attribute, and the material
mi::Float64_4_4 matrix(1.0);

matrix.translate(-6.1, -0.5, 0.2);

matrix.rotate(0.0, MI_PI_2, 0.0);

instance->set_matrix(matrix);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

mi::base::Handle<mi: :IRef> material(instance->create_attribute<mi::IRef>("material”, "Ref"));
material->set_reference("red_material");

transaction->store(instance.get(), "instance_red");

// And attach the instance to the root group
mi::base::Handle<mi: :neuraylib::IGroup> group(

transaction->edit<mi::neuraylib: :IGroup>(rootgroup));
group->attach("instance_red");

// Create the blue object as a Loop-subdivision surface based on the red tetrahedron

transaction->copy("mesh_red", "mesh_blue");

mi::base::Handle<mi: :neuraylib::ITriangle_mesh> mesh_blue(
transaction->edit<mi::neuraylib::ITriangle_mesh>("mesh_blue"));

loop_subdivision(mesh_blue.get());

loop_subdivision(mesh_blue.get());

loop_subdivision(mesh_blue.get());

loop_subdivision(mesh_blue.get());

// Create the instance for the blue object
instance = transaction->create<mi::neuraylib::IInstance>("Instance");
instance->attach("mesh_blue");

// Set the transformation matrix, the visible attribute, and the material
matrix = mi::Float64_4_4(1.9);

matrix.translate(0.4, -1.5, -1.6);

matrix.rotate(0.0, 1.25 *» MI_PI_2, 0.0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 335

20 Source code for examples 20.26 example_triangle_mesh.cpp

mi::Float64_4_4 matrix_scale(©.25, 0, 0, 0, 0, 0.25, 0, 0, @, @, ©0.25, @, 0, @, 0, 1);
matrix *= matrix_scale;
instance->set_matrix(matrix);

visible = instance->create_attribute<mi::IBoolean>("visible", "Boolean");
visible->set_value(true);

material = instance->create_attribute<mi::IRef>("material", "Ref");
material->set_reference("blue_material");

transaction->store(instance.get(), "instance_blue");

// And attach the instance to the root group
group = transaction->edit<mi::neuraylib::IGroup>(rootgroup);
group->attach("instance_blue");

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)
{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(
neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());
check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);

// Load the OpenImagelO, Iray Photoreal, and .mi importer plugins.
mi::base::Handle<mi::neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio"” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("mi_importer" MI_BASE_DLL_FILE_EXT) == @);
}

void rendering(mi::neuraylib::INeuray* neuray)
{
// Get the database, the global scope of the database, and create a transaction in the global
// scope for importing the scene file and storing the scene.
mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());
mi::base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi: :neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi::neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 336

20 Source code for examples 20.26 example_triangle_mesh.cpp

// Add two triangle meshes to the scene
setup_scene(transaction.get(), import_result->get_rootgroup());

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi: :neuraylib::IScene>("the_scene");

mi: :base::Handle<mi: :neuraylib: :IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene

mi::base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi::neuraylib::IImage_api>());

mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));

check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi::base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_triangle_mesh.png", canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(argc '= 2) {
std::cerr << "Usage: example_triangle_mesh <mdl_path>" << std::endl;
keep_console_open();
return EXIT_FAILURE;
}

const char* mdl_path = argv[1];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 337

20 Source code for examples 20.26 example_triangle_mesh.cpp

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 338

20 Source code for examples 20.27 example_user_defined_classes.cpp

20.27 example_user_defined_classes.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "imy_class.h"
#include "my_class.h"

void configuration(mi::neuraylib::INeuray* neuray)
{
// Register the user-defined class.
mi: :base::Handle<mi: :neuraylib::IExtension_api> extension_api(
neuray->get_api_component<mi: :neuraylib::IExtension_api>());
check_success(extension_api.is_valid_interface());

check_success(extension_api->register_class<My_class>("My_class") == 0);

}

void test_plugin(mi::neuraylib::INeuray* neuray)

{
// Get the database, the global scope of the database, and create a transaction in the global
// scope.

mi::base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());

check_success(database.is_valid_interface());

mi: :base::Handle<mi: :neuraylib: :IScope> scope(
database->get_global_scope());

mi::base::Handle<mi::neuraylib::ITransaction> transaction(
scope->create_transaction());

check_success(transaction.is_valid_interface());

// Create instance of My_class and call a method on it.

mi: :base::Handle<IMy_class> my_class(transaction->create<IMy_class>("My_class"));
check_success(my_class.is_valid_interface());

my_class->set_foo(42);

// Store instance of My_class in the database and release the handle
check_success(transaction->store(my_class.get(), "some_name") == 0);
my_class = 0;

// Get the instance of My_class from the database again and change the property
my_class = transaction->edit<IMy_class>("some_name");

check_success(my_class.is_valid_interface());

check_success(my_class->get_foo() == 42);

my_class->set_foo(43);

my_class = 0;

transaction->commit();

}

int main(int /*argc*/, charx /xargvx/[])

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 339

20 Source code for examples 20.27 example_user_defined_classes.cpp

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get());

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Load and interact with the plugin
test_plugin(neuray.get());

// Shut down the neuray library
check_success(neuray->shutdown() == 0);
neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 340

20 Source code for examples 20.28 example_volumes.cpp

20.28 example_volumes.cpp

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include "example_shared.h"
#include "example_render_target_simple.h"

#include <iostream>

void setup_scene(mi::neuraylib::INeuray* neuray,
mi::neuraylib::ITransaction* transaction,
const char* rootgroup,
const char* volume_file)

// The "unique" element names used in the example
const char* element_name = "Smoke";

const char* instance_name = "Smoke_instance";
const char* vol_name = "Vol";

const char* tex_name = "Vol_tex";

// Create volume data container
mi::base::Handle<mi: :neuraylib::IVolume_data> volume_data (
transaction->create<mi::neuraylib::IVolume_data>("Volume_data"));

// List VDB content
mi: :base::Handle<const mi: :IArray> channel_info(volume_data->1list_contents(volume_file));

fprintf(stderr, "---------------— \n");
fprintf(stderr, "Volume file '%s’ grid info\n", volume_file);
fprintf(stderr, "------------------- \n");

for (mi::Size i = @; i < channel_info->get_length(); ++i) {
mi::base::Handle<const mi::neuraylib::IVolume_info> item(
channel_info->get_element<mi: :neuraylib::IVolume_info>(1i));
const mi::Voxel_block_struct& vb = item->get_data_bounds();
const mi::Float32_4_4& m = item->get_transform();
fprintf(stderr,
"name='%s', value type='%s’', data bounds=((%d, %d, %d), (%d, %d, %d)),
"transform=(%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f)\n",
item->get_name() ? item->get_name() : "",
item->get_value_type(),
vb.min.x, vb.min.y, vb.min.z, vb.max.x, vb.max.y, vb.max.z,
m.XX, M.Xy, M.XZ, M.XW, M.yx, m.yy, m.yz, m.yw, m.zx, m.zy, m.zz, m.zw, m.wx, m.wy, m.wz, m.ww);

}
fprintf(stderr, "------------------ - \n");

// Load the volume data

// nullptr in second argument -> default channel

check_success(volume_data->reset_file(volume_file) == 0);

mi::Voxel_block voxel_bounds = volume_data->get_data_bounds();

mi::Float32_4_4 voxel_transform = volume_data->get_transform();
transaction->store(volume_data.get(), vol_name, mi::neuraylib::ITransaction::LOCAL_SCOPE);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 341

20 Source code for examples 20.28 example_volumes.cpp

// Create the volume object

mi: :base::Handle<mi: :neuraylib::IVolume> volume (
transaction->create<mi::neuraylib::IVolume>("Volume"));

mi: :Bbox3 bbox (voxel_bounds);

volume->set_bounds(bbox, voxel_transform);

transaction->store(volume.get(), element_name);

// Create an instance of that volume

mi: :base::Handle<mi: :neuraylib::IInstance> instance (
transaction->create<mi::neuraylib::IInstance>("Instance"));

instance->attach(element_name);

mi: :base::Handle<mi: :IBoolean> visible(
instance->create_attribute<mi: :IBoolean>("visible", "Boolean"));
visible->set_value(true);

// Set an instrance transformation to fit the smoke volume to our example scene
mi::Float64_4_4 matrix (voxel_transform);
// Start by inverting the data given transform.
matrix.invert();
// Center at origin
matrix.translate(-voxel_bounds.center().x,
-voxel_bounds.center().y,
-voxel_bounds.center().z);
// Scale relative to the data size, but keep aspect ratio
mi::Float64_4_4 scale(3.0f / static_cast<float>(voxel_bounds.extent().y));
scale.ww = 1.0f; matrix *= scale;
// Move above ground plane and towards focus
matrix.translate(-1.0f, 1.5f, 1.0f);
matrix.invert();
instance->set_matrix(matrix);

mi: :base::Handle<mi: :IRef> material(
instance->create_attribute<mi: :IRef>("material", "Ref"));
material->set_reference("smoke");

mi::base::Handle<mi: :neuraylib::ITexture> texture (
transaction->create<mi: :neuraylib::ITexture>("Texture"));
texture->set_volume(vol_name);
transaction->store(texture.get(), tex_name, mi::neuraylib::ITransaction: :LOCAL_SCOPE);

// Attach the texture to the material property "density"

mi::base::Handle<mi: :neuraylib::IMd1_factory> mdl_factory(
neuray->get_api_component<mi: :neuraylib::IMd1l_factory>());

mi: :base::Handle<mi: :neuraylib: :IExpression_factory> expression_factory(
md1l_factory->create_expression_factory(transaction));

mi::neuraylib: :Argument_editor smoke_material(
transaction, "smoke", mdl_factory.get());

check_success(smoke_material.set_value("density", tex_name) == 0);

transaction->store(instance.get(), instance_name, mi::neuraylib::ITransaction: :LOCAL_SCOPE);

// Attach the instance to the root group

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 342

20 Source code for examples 20.28 example_volumes.cpp

mi::base::Handle<mi::neuraylib::IGroup> group(
transaction->edit<mi::neuraylib: :IGroup>(rootgroup));
group->attach(instance_name);

}

void configuration(mi::neuraylib::INeuray* neuray, const char* mdl_path)

{
// Configure the neuray library. Here we set the search path for .mdl files.
mi: :base::Handle<mi: :neuraylib::IRendering_configuration> rc(

neuray->get_api_component<mi: :neuraylib::IRendering_configuration>());

check_success(rc->add_mdl_path(mdl_path) == 0);
check_success(rc->add_mdl_path(".") == 0);
check_success(rc->add_resource_path(".") == 0);

// Load the OpenImageIO, Iray Photoreal, and .mi importer plugins.
mi: :base::Handle<mi: :neuraylib::IPlugin_configuration> pc(
neuray->get_api_component<mi: :neuraylib::IPlugin_configuration>());
check_success(pc->load_plugin_library("nv_openimageio” MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("libiray" MI_BASE_DLL_FILE_EXT) == 0);
check_success(pc->load_plugin_library("mi_importer"” MI_BASE_DLL_FILE_EXT) == 0);
}

void rendering(mi::neuraylib::INeuray* neuray, const char* volume_file)
{
// Get the database, the global scope of the database, and create a transaction
// in the global scope for importing the scene file and storing the scene.
mi: :base::Handle<mi: :neuraylib::IDatabase> database(
neuray->get_api_component<mi: :neuraylib::IDatabase>());
check_success(database.is_valid_interface());
mi: :base::Handle<mi: :neuraylib::IScope> scope(
database->get_global_scope());
mi: :base::Handle<mi: :neuraylib::ITransaction> transaction(
scope->create_transaction());
check_success(transaction.is_valid_interface());

// Import the scene file

mi::base::Handle<mi::neuraylib::IImport_api> import_api(
neuray->get_api_component<mi: :neuraylib::IImport_api>());

check_success(import_api.is_valid_interface());

mi: :base::Handle<const mi: :neuraylib::IImport_result> import_result(
import_api->import_elements(transaction.get(), "file:main.mi"));

check_success(import_result->get_error_number() == 0);

// Add the volume to the scene
setup_scene(neuray, transaction.get(), import_result->get_rootgroup(), volume_file);

// Create the scene object

mi: :base::Handle<mi: :neuraylib::IScene> scene(
transaction->create<mi: :neuraylib::IScene>("Scene"));

scene->set_rootgroup(import_result->get_rootgroup());

scene->set_options(import_result->get_options());

scene->set_camera_instance(import_result->get_camera_inst());

transaction->store(scene.get(), "the_scene");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 343

20 Source code for examples 20.28 example_volumes.cpp

// Create the render context using the Iray Photoreal render mode

scene = transaction->edit<mi::neuraylib::IScene>("the_scene");

mi::base::Handle<mi: :neuraylib::IRender_context> render_context(
scene->create_render_context(transaction.get(), "iray"));

check_success(render_context.is_valid_interface());

mi::base::Handle<mi: :IString> scheduler_mode(transaction->create<mi::IString>());

scheduler_mode->set_c_str("batch");

render_context->set_option("scheduler_mode", scheduler_mode.get());

scene = 0;

// Create the render target and render the scene
mi: :base::Handle<mi: :neuraylib::IImage_api> image_api(
neuray->get_api_component<mi: :neuraylib::IImage_api>());
mi::base::Handle<mi: :neuraylib::IRender_target> render_target(
new Render_target(image_api.get(), "Color", 512, 384));
check_success(render_context->render(transaction.get(), render_target.get(), 0) >=0);

// Write the image to disk

mi: :base::Handle<mi: :neuraylib: :IExport_api> export_api(
neuray->get_api_component<mi: :neuraylib::IExport_api>());

check_success(export_api.is_valid_interface());

mi: :base::Handle<mi: :neuraylib::ICanvas> canvas(render_target->get_canvas(0));

export_api->export_canvas("file:example_volumes.png", canvas.get());

transaction->commit();

}

int main(int argc, char* argv[])
{
// Collect command line parameters
if(argc '= 3 && argc '= 2) {
std::cerr << "Usage: example_volumes <mdl_path> [<volume_file>]" << std::endl;
keep_console_open();
return EXIT_FAILURE;

}
const char* mdl_path = argv[1];
const char* volume_file = argc == ? "smoke.vdb" : argv[2];

// Access the neuray library
mi::base::Handle<mi: :neuraylib::INeuray> neuray(load_and_get_ineuray());
check_success(neuray.is_valid_interface());

// Configure the neuray library
configuration(neuray.get(), mdl_path);

// Start the neuray library
mi::Sint32 result = neuray->start();
check_start_success(result);

// Do the actual rendering
rendering(neuray.get(), volume_file);

// Shut down the neuray library
check_success(neuray->shutdown() == 0);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 344

20 Source code for examples 20.28 example_volumes.cpp

neuray = 0;

// Unload the neuray library
check_success(unload());

keep_console_open();
return EXIT_SUCCESS;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 345

20 Source code for examples 20.29 imy_class.h

20.29 imy_class.h

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#ifndef IMY_CLASS_H
#define IMY_CLASS_H

#include <mi/neuraylib.h>

class IMy_class : public
mi: :base::Interface_declare<dx7274f2a1,0xb7e1,0x4fc7,0x8c,0xe4d, 0xef,0x2d, 0xd0, 0x9b, 8x75, 8x52,

mi::neuraylib::IUser_class>
{
public:
// Sets property foo
virtual void set_foo(mi::Sint32 foo) = 0;

// Gets property foo
virtual mi::Sint32 get_foo() const = 0;

|3

#endif // IMY_CLASS_H

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 346

20 Source code for examples 20.30 my_class.h

20.30 my_class.h

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#ifndef MY_CLASS_H
#define MY_CLASS_H

#include <mi/neuraylib.h>
#include "imy_class.h"

class My_class : public
mi::neuraylib::User_class<0x0650d689,0xef50,0x433f, 0xb3, Oxae, Oxae, 0x83,0xa9, 0xf2,0xf2,0xa6,
IMy_class>
{
public:
// Constructor
My_class() { m_foo = 0; }

// Destructor
~My_class() { }

// Sets property foo
void set_foo(mi::Sint32 foo) { m_foo = foo; }

// Gets property foo
mi::Sint32 get_foo() const { return m_foo; }

// Serializes an instance of My_class
void serialize(mi::neuraylib::ISerializer* serializer) const
{

serializer->write(&m_foo0);

}

// Deserializes an instance of My_class
void deserialize(mi::neuraylib::IDeserializer* deserializer)
{

deserializer->read(&m_foo);

}

// Creates a copy of the object
mi::neuraylib::IUser_class* copy () const
{
My_class* copy = new My_class(*this);
return copy;

}

// Returns a human readable class name
const char* get_class_name() const

{

return "My_class";

}

// Returns the list of elements referenced by this elements, none in this example.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 347

20 Source code for examples 20.30 my_class.h

mi::IArray* get_references(mi::neuraylib::ITransaction* /*transaction*/) const

{

return 0;

}

private:
// Member to realize property foo
mi::Sint32 m_foo;

b

#endif // MY_CLASS_H

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 348

20 Source code for examples 20.31 plugin.cpp

20.31 plugin.cpp

[Fhkkhhkkkhhkhhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhrhhhhhhhhhhhkhhhkhhhkhhrhrkhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>
#include "my_class.h"

class Plugin_impl : public mi::neuraylib::IPlugin
{
public:

// Virtual destructor

virtual ~Plugin_impl() { }

// Returns the name of the plugin
const char* get_name() const { return "example plugin"; }

// Returns the type of the plugin
const charx get_type() const { return MI_NEURAYLIB_PLUGIN_TYPE; }

// Returns the version of the plugin
mi::Sint32 get_version() const { return 1; }

// Returns the compiler used to compile the plugin
const charx get_compiler() const { return "unknown"; }

// Releases the plugin giving back all allocated resources
void release() { delete this; }

// Initializes the plugin
bool init(mi::neuraylib::IPlugin_api* plugin_api)
{
mi::base::Handle<mi: :neuraylib::ILogging_configuration> logging_configuration(
plugin_api->get_api_component<mi::neuraylib::ILogging_configuration>());
mi::base::Handle<mi: :base::ILogger> logger(
logging_configuration->get_forwarding_logger());
logger->message(mi::base::MESSAGE_SEVERITY_INFO, "PLUGIN",
"Plugin_impl::init() called");
mi::base::Handle<mi: :neuraylib::IExtension_api> extension_api(
plugin_api->get_api_component<mi::neuraylib::IExtension_api>());
if(! extension_api.is_valid_interface())
return false;
return extension_api->register_class<My_class>("My_class") == 0;

// Exits the plugin
bool exit(mi::neuraylib::IPlugin_api* plugin_api)
{
mi::base::Handle<mi: :neuraylib::ILogging_configuration> logging_configuration(
plugin_api->get_api_component<mi: :neuraylib::ILogging_configuration>());
mi: :base::Handle<mi: :base::ILogger> logger(
logging_configuration->get_forwarding_logger());
logger->message(mi::base::MESSAGE_SEVERITY_INFO, "PLUGIN",
"Plugin_impl::exit() called");

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 349

20 Source code for examples 20.31 plugin.cpp

return true;
}
b

extern "C"
MI_DLL_EXPORT
mi: :base::Plugin* mi_plugin_factory(

mi::Sint32 index, // index of the plugin
void* context) // context given to the library, ignore
{
if(index != 0)
return 0;
return new Plugin_impl;
}

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 350

20 Source code for examples 20.32 vanilla_exporter.h

20.32 vanilla_exporter.h

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include <string>

#include <list>

#include <set>

#include <map>

#include <utility> // for std::pair
#include <sstream>

static std::string enum_to_str(mi::base::Message_severity severity)
{
switch(severity) {
case mi: :base: :MESSAGE_SEVERITY_FATAL: return "fatal";
case mi: :base: :MESSAGE_SEVERITY_ERROR: return "error";
case mi::base::MESSAGE_SEVERITY_WARNING: return "warning";
case mi::base::MESSAGE_SEVERITY_INFO: return "information";
case mi: :base: :MESSAGE_SEVERITY_VERBOSE: return "verbose";
case mi::base::MESSAGE_SEVERITY_DEBUG: return "debug";
default: return "unknown" ;

class Vanilla_export_state
: public mi::base::Interface_implement< mi::neuraylib::IImpexp_state>
{
public:
// Constructor.
Vanilla_export_state(const char* uri, const mi::neuraylib::IImpexp_state* parent_state)
: m_line_number(1),
m_uri(uri ? uri : ""),
m_parent_state(parent_state, mi::base::DUP_INTERFACE) { }

// Definition of all interface functions.
const char* get_uri() const { return m_uri.empty() ? © : m_uri.c_str(); }
mi::Uint32 get_line_number() const { return m_line_number; }
void set_line_number(mi::Uint32 number) { m_line_number = number; }
void incr_line_number() { ++m_line_number; }
const mi::neuraylib::IImpexp_state* get_parent_state() const
{

if(m_parent_state)

m_parent_state->retain();

return m_parent_state.get();

¥

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 351

20 Source code for examples 20.32 vanilla_exporter.h

private:
mi: :Uint32 m_line_number;
std::string m_uri;
mi::base::Handle<const mi::neuraylib::IImpexp_state> m_parent_state;

b

class Vanilla_exporter

: public mi::base::Interface_implement< mi::neuraylib::IExporter>
{
public:

// Definition of all interface functions.

mi::neuraylib::IImpexp_state* create_impexp_state(
const char* uri, const mi::neuraylib::IImpexp_state* parent_state) const
{

return new Vanilla_export_state(uri, parent_state);

}

// This exporter supports the file name extensions ".vnl" and ".van
const char* get_supported_extensions(mi::Uint32 i) const

{
switch(i) {
case 0: return ".vnl";
case 1: return ".van";
default: return 9;
}
}
mi::neuraylib: :Impexp_priority get_priority() const
{
return mi: :neuraylib: :IMPEXP_PRIORITY_WELL_DEFINED;
}

const char* get_name() const { return "NVIDIA example vanilla (v1) exporter"; }
const char* get_author() const { return "NVIDIA Corporation, Berlin, Germany"; }
mi::base::Uuid get_uuid() const

{

mi: :base: :Uuid uuid;

uuid.m_id1 = 0Ox7bBa3b59;
uuid.m_id2 = Oxbed44329;
uuid.m_id3 = O6xad1a2353;
uuid.m_id4 = Oxb0ab89a8;

return uuid;

mi::Uint32 get_major_version() const { return 1; }
mi::Uint32 get_minor_version() const { return @; }
bool test_file_type(const char* extension) const;

bool test_file_type(const char* extension, const mi::neuraylib::IWriter* writer) const;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 352

20 Source code for examples 20.32 vanilla_exporter.h

mi::neuraylib: :IExport_result* export_scene(
mi::neuraylib::ITransaction* transaction,
const char* extension,
mi::neuraylib::IWriter* writer,
const char* rootgroup,
const char* caminst,
const char* options,
const mi::IMap* exporter_options,
mi::neuraylib::IImpexp_state* export_state) const;

mi::neuraylib: :IExport_result* export_elements(
mi::neuraylib::ITransaction* transaction,
const char* extension,
mi::neuraylib::IWriter* writer,
const mi::TArray* elements,
const mi::IMap* exporter_options,
mi::neuraylib::IImpexp_state* export_state) const;

private:
// Definition of support functions. They are not part of the interface.

// Formats message with context and appends it to the messages in the result.
static mi::neuraylib::IExport_result_ext* report_message(
mi::neuraylib::IExport_result_ext* result,
mi::Uint32 message_number,
mi::base: :Message_severity message_severity,
std::string message,
const mi::neuraylib::IImpexp_state* export_state)

std::ostringstream s;
const char* uri = export_state->get_uri();
s << (uri ? uri : "(no URI)")
<< ":" << export_state->get_line_number() <<
<< "Vanilla exporter message " << message_number << ", "
<< "severity " << enum_to_str(message_severity) << ": "
<< message;
// Report context of all parent export states from recursive invocations of
// export_elements() in their own lines with indentation.
mi::base::Handle<const mi: :neuraylib::IImpexp_state> parent_state(
export_state->get_parent_state());
while(parent_state.is_valid_interface()) {

s << "\n included from: " << parent_state->get_uri()
<< ":" << parent_state->get_line_number();
parent_state = parent_state->get_parent_state();

}
result->message_push_back(message_number, message_severity, s.str().c_str());
return result;

// Writes name to writer, writes the name without the leading prefix if it is equal to the
// prefix parameter.

static void write_name(

const std::string& name, const std::string& prefix, mi::neuraylib::IWriter* writer)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 353

20 Source code for examples 20.32 vanilla_exporter.h

{
if(prefix.size() > @ & & © == name.compare(0, prefix.size(), prefix))
writer->writeline(name.c_str() + prefix.size());
else
writer->writeline(name.c_str());
}

// Returns the element type of an element.
static std::string get_element_type(const mi::base::IInterface* interface)
{
mi: :base::Handle<const mi::neuraylib::IGroup> group(
interface->get_interface<mi: :neuraylib::IGroup>());
if(group.is_valid_interface())
return "Group";
mi::base::Handle<const mi::neuraylib::IInstance> instance(
interface->get_interface<mi: :neuraylib::IInstance>());
if(instance.is_valid_interface())
return "Instance";
return "Unknown";
}
3

bool Vanilla_exporter::test_file_type(const char* extension) const

{

// This exporter supports the file name extensions ".vnl" and ".van
mi::Size len = std::strlen(extension);
return (len > 3)
& ((@ == strcmp(extension + len - 4, ".vnl"))
|| (@ == strcmp(extension + len - 4, ".van")));

bool Vanilla_exporter::test_file_type(
const char* extension, const mi::neuraylib::IWriterx*) const
{
// The writer capabilities do not matter for this simple format. More involved formats might
// require random access from the writer.
return test_file_type(extension);

}

mi::neuraylib: :IExport_result* Vanilla_exporter::export_scene(
mi::neuraylib::ITransaction* transaction,
const char* /xextension*/,
mi::neuraylib::IWriter* writer,
const char* rootgroup,
const char* caminst,
const char* options,
const mi::IMap* exporter_options,
mi::neuraylib: :IImpexp_state* export_state) const
{
// Create the exporter result instance for the return value. If that fails something is really
// wrong and we return ©.
mi::neuraylib::IExport_result_ext* result
= transaction->create<mi::neuraylib: :IExport_result_ext>("Export_result_ext");
if(!result)

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 354

20 Source code for examples 20.32 vanilla_exporter.h

return 0;

// Get the 'strip_prefix’ option.
std::string strip_prefix;
if(exporter_options && exporter_options->has_key("strip_prefix")) {
mi::base::Handle<const mi::IString> option(
exporter_options->get_value<mi: :IString>("strip_prefix"));
if(!option.is_valid_interface())
return report_message(
result, 6, mi::base::MESSAGE_SEVERITY_ERROR,
"The option ’'strip_prefix’ has an invalid type.", export_state);
strip_prefix = option->get_c_str();

}

// Two data structures maintain the information during export. The elements list keeps the names
// of all elements that we want to export and a bit if they have been expanded already. The

// order of elements follows the .mi requirements; elements that are referenced are first in the
// list and exported before the elements that reference them. The elements_exported map

// maintains a list of all exported elements. That allows us to handle objects that are

// referenced multiple times and export them only once.

std::list< std::pair< std::string, bool> > elements;

std::set< std::string> elements_exported;

// Initialize the elements list with the three input parameters.

if(options && options[@] !'= '\0@’)
elements.push_back(std::make_pair(std::string(options), false));
if(caminst && caminst[@] '= '\0@’)

elements.push_back(std::make_pair(std::string(caminst), false));
elements.push_back(std::make_pair(std::string(rootgroup), false));

// Start file with magic header and use Windows line-ending convention with CR LF pairs.
writer->writeline("VANILLA\r\n");

// Main loop through all elements
// This is a simplified recursive directed acyclic graph traversal on the scene graph that
// performs a depth first search. The traversal is implemented as an iterative loop and a stack
// on the elements list data structure. The boolean value of entries in the elements list
// encodes whether we are descending or are ascending in the graph. This flag determines whether
// we need to expand into the element and put all its children on the stack, or whether we are
// done with the element and can write it out to file. Other exporters might need to manage more
// data during the traversal, such as a transformation stack.
while((@ == writer->get_error_number()) && ('elements.empty()))

if(elements.front().second) {

// Traversal is ascending in the scene graph

// Keep element name and remove it from list

std::string name = elements.front().first;

elements.pop_front();

// Check if element has not been written yet

if(elements_exported.find(name) == elements_exported.end()) {
// Element can be written to file, mark it as written
elements_exported.insert(name);
// Access the element in the DB
mi: :base::Handle<const mi::base::IInterface> element(

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 355

20 Source code for examples 20.32 vanilla_exporter.h

transaction->access(name.c_str()));
if(!element.is_valid_interface()) {
// The element is not in the DB. Export fails with customized message.
std::string message("Element '");
message += name + "' does not exist in database, export failed.";
// Error numbers from 6000 to 7999 are reserved for custom
// exporter messages like this one
return report_message(result, 6601, mi::base::MESSAGE_SEVERITY_ERROR,
message, export_state);
}
writer->writeline(get_element_type(element.get()).c_str());
writer->writeline(" \"");
write_name(name, strip_prefix, writer);
writer->writeline("\"\r\n");

} else {

// Traversal is descending in the scene graph, mark element as expanded.

elements.front().second = true;

// Expand front element, but keep it in the list.

std::string name = elements.front().first;

// Access the element in the DB.

mi: :base::Handle<const mi::base::IInterface> element(
transaction->access(name.c_str()));

if(!element.is_valid_interface()) {
// The element is not in the DB. Export fails with customized message.
std::string message("Element '");
message += name + "’ does not exist in database, export failed.";
return report_message(result, 6602, mi::base::MESSAGE_SEVERITY_ERROR,

message, export_state);

}

// Dispatch on the type name of the element.

std::string element_type = get_element_type(element.get());

if(element_type == "Group") {

mi::base::Handle<const mi: :neuraylib::IGroup> group(
element->get_interface<mi: :neuraylib::IGroup>());

// Enumerate all elements in the group and push them in reverse order on the

// elements list front.

mi::Uint32 group_size = group->get_length();

for(mi::Uint32 i = ©; i != group_size; ++i) {
const char* element_name = group->get_element(group_size - i -1);

// Optimization: put name only in the elements list if it has not been exported

// yet.
if(elements_exported.find(element_name) == elements_exported.end())
elements.push_front(std::make_pair(std::string(element_name), false));
}
} else if(element_type == "Instance") {

mi::base::Handle<const mi::neuraylib::IInstance> instance(
element->get_interface<mi: :neuraylib::IInstance>());
// Get element in the instance and push it on the elements list front.

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 356

20 Source code for examples 20.32 vanilla_exporter.h

const char* element_name = instance->get_item();
// Optimization: put name only in the elements list if it has not been exported yet.
if(elements_exported.find(element_name) == elements_exported.end())
elements.push_front(std::make_pair(std::string(element_name), false));

}
}
}
// Report message condition for a possibly failed writer call
if(writer->get_error_number() != 0)
return report_message(
result,

static_cast<mi: :Uint32>(writer->get_error_number()),

mi: :base: :MESSAGE_SEVERITY_ERROR,
writer->get_error_message() ? writer->get_error_message()
export_state);

return result;

mi::neuraylib: :IExport_result* Vanilla_exporter::export_elements(
mi::neuraylib::ITransaction* transaction,
const char*x /xextension*/,
mi::neuraylib::IWriter* writer,
const mi::TArray* elements,
const mi::IMap* exporter_options,
mi::neuraylib::IImpexp_state*x export_state) const

// Create the exporter result instance for the return value.
// If that fails something is really wrong and we return 0.
mi::neuraylib::IExport_result_ext* result

= transaction->create<mi::neuraylib::IExport_result_ext>("Export_result_ext");
if(!result)

return 0;

// Get the ’'strip_prefix’ option.
std::string strip_prefix;
if(exporter_options && exporter_options->has_key("strip_prefix")) {
mi::base::Handle<const mi::IString> option(
exporter_options->get_value<mi: :IString>("strip_prefix"));
if(!option.is_valid_interface())
return report_message(
result, 6, mi::base::MESSAGE_SEVERITY_ERROR,
"The option ’'strip_prefix’ has an invalid type.", export_state);
strip_prefix = option->get_c_str();

}

// Start file with magic header and use Windows line-ending convention with CR LF pairs.
writer->writeline("VANILLA\xBD\x0A");

// Iterate through the string array of element names
mi::Size size = elements->get_length();
for(mi::Size i = @; (@ == writer->get_error_number()) && i < size; ++i) {

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 357

20 Source code for examples 20.32 vanilla_exporter.h

// Get string for element i from the array
mi: :base::Handle<const mi::IString> name(elements->get_element<mi: :IString>(i));
if(!'name.is_valid_interface()) {
return report_message(result, 6007, mi::base::MESSAGE_SEVERITY_ERROR,
"element array contains an invalid object", export_state);

}

const char* element_name = name->get_c_str();

// Access the element in the DB
mi: :base::Handle<const mi: :base::IInterface> element(transaction->access(element_name));
if(lelement.is_valid_interface()) {
std::string message("Element '");
message += element_name;
message += "' does not exist in database, export failed.";
return report_message(result, 6008, mi::base::MESSAGE_SEVERITY_ERROR,
message, export_state);

// Write element to file

writer->writeline(get_element_type(element.get()).c_str());
writer->writeline(" \"");

write_name(element_name, strip_prefix, writer);
writer->writeline("\"\x@D\xBA");

return result;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 358

20 Source code for examples 20.33 vanilla_importer.h

20.33 vanilla_importer.h

[Fhkkhhkkhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhrhhkhhrrhhhhrhhhhhhkhhrrk

* Copyright 2024 NVIDIA Corporation. All rights reserved.
***/

#include <mi/neuraylib.h>

#include <string>
#include <sstream>

static std::string enum_to_str(mi::base::Message_severity severity)
{
switch(severity) {
case mi::base: :MESSAGE_SEVERITY_FATAL: return "fatal";
case mi: :base: :MESSAGE_SEVERITY_ERROR: return "error";
case mi::base::MESSAGE_SEVERITY_WARNING: return "warning";
case mi::base: :MESSAGE_SEVERITY_INFO: return "information";
case mi::base: :MESSAGE_SEVERITY_VERBOSE: return "verbose";
case mi: :base: :MESSAGE_SEVERITY_DEBUG: return "debug";
default: return "unknown" ;

class Vanilla_import_state
: public mi::base::Interface_implement< mi::neuraylib::IImpexp_state>
{
public:
// Constructor.
Vanilla_import_state(const char* uri, const mi::neuraylib::IImpexp_state* parent_state)
: m_line_number(1),
m_uri(uri ? uri : "")
m_parent_state(parent_state, mi::base::DUP_INTERFACE) { }

// Definition of all interface functions.

const char* get_uri() const { return m_uri.empty() ? © : m_uri.c_str(); }
mi::Uint32 get_line_number() const { return m_line_number; }

void set_line_number(mi::Uint32 number) { m_line_number = number; }

void incr_line_number() { ++m_line_number; }

const mi::neuraylib::IImpexp_statex get_parent_state() const
{
if(m_parent_state)
m_parent_state->retain();
return m_parent_state.get();

}

private:
mi: :Uint32 m_line_number;
std::string m_uri;
mi::base::Handle<const mi: :neuraylib::IImpexp_state> m_parent_state;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 359

20 Source code for examples 20.33 vanilla_importer.h

b

class Vanilla_importer
: public mi::base::Interface_implement< mi::neuraylib::IImporter>
{
public:
// Constructor.
Vanilla_importer(mi::neuraylib::IPlugin_api* plugin_api)
: m_plugin_api(plugin_api, mi::base::DUP_INTERFACE) { }

// Definition of all interface functions.

mi::neuraylib::IImpexp_state* create_impexp_state(
const char* uri, const mi::neuraylib::IImpexp_state* parent_state) const
{

return new Vanilla_import_state(uri, parent_state);

}

// This importer supports the file name extensions ".vnl" and ".van".
const char* get_supported_extensions(mi::Uint32 i) const
{
switch(i) {
case 0: return ".vnl";
case 1: return ".van";
default: return 9;

}
}
mi::neuraylib::Impexp_priority get_priority() const
{
return mi: :neuraylib: :IMPEXP_PRIORITY_WELL_DEFINED;
}

const char* get_name() const { return "NVIDIA example vanilla (v1) importer"; }
const char* get_author() const { return "NVIDIA Corporation, Berlin, Germany"; }
mi::base::Uuid get_uuid() const

{

mi: :base: :Uuid uuid;

uuid.m_id1 = 0x338ecabd;
uuid.m_id2 = 0x31004802;
uuid.m_id3 = Oxaab9046b;
uuid.m_id4 = 0x9eBb1d9b;
return uuid;

}

mi::Uint32 get_major_version() const { return 1; }
mi::Uint32 get_minor_version() const { return @; }
bool test_file_type(const char* extension) const;

bool test_file_type(const char* extension, const mi::neuraylib::IReader* reader) const;

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 360

20 Source code for examples 20.33 vanilla_importer.h

mi::neuraylib::IImport_result* import_elements(
mi::neuraylib::ITransaction* transaction,
const char* extension,
mi::neuraylib::IReader* reader,
const mi::IMap* options,
mi::neuraylib::IImpexp_state* import_state) const;

private:
// Definition of support functions. They are not part of the interface.

// Format message with context and append it to the messages in the result.
static mi::neuraylib::IImport_result_ext* report_message(
mi::neuraylib::IImport_result_ext* result,
mi::Uint32 message_number,
mi::base::Message_severity message_severity,
std::string message,
const mi::neuraylib::IImpexp_state* import_state)

std::ostringstream s;

s << import_state->get_uri()
<< ":" << import_state->get_line_number() <<
<< "Vanilla importer message " << message_number << ",
<< "severity " << enum_to_str(message_severity) <<
<< message;

// Report context of all parent import states from recursive invocations of
// import_elements() in their own lines with indentation.

mi: :base::Handle<const mi::neuraylib::IImpexp_state> parent_state(

import_state->get_parent_state());
while(parent_state.is_valid_interface()) {

s << "\n included from: " << parent_state->get_uri()
<< ":" << parent_state->get_line_number();
parent_state = parent_state->get_parent_state();

}
result->message_push_back(message_number, message_severity, s.str().c_str());
return result;

mi::base::Handle<mi: :neuraylib::IPlugin_api> m_plugin_api;

|3

bool Vanilla_importer::test_file_type(const char* extension) const

{

// This importer supports the file name extensions ".vnl" and ".van
mi::Size len = std::strlen(extension);
return (len > 3)
& ((@ == strcmp(extension + len - 4, ".vnl"))
|| (@ == strcmp(extension + len - 4, ".van")));

bool Vanilla_importer::test_file_type(
const char* extension, const mi::neuraylib::IReader* reader) const

{

// Use magic header check if lookahead is available

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 361

20 Source code for examples 20.33 vanilla_importer.h

if(reader->supports_lookahead()) {
// File has to start with "VANILLA" and linebreak, which can be \n or \r depending on the

// line ending convention in the file.

const char** buffer = 0;

mi::Sint64 n = reader->lookahead(8, buffer);

return (n >= 8) && (0 == std::strncmp(*buffer, "VANILLA", 7))

&& (((*buffer)[7] == '\n") || ((*buffer)[7] == "\r"));

}
// This importer supports the file name extensions ".vnl" and ".van".
mi::Size len = std::strlen(extension);
return (len > 3)

& ((@ == strcmp(extension + len - 4, ".vnl"))

|| (8 == strcmp(extension + len - 4, ".van")));

}

mi::neuraylib: :IImport_result* Vanilla_importer::import_elements(
mi::neuraylib::ITransaction* transaction,
const char* extension,
mi::neuraylib::IReader* reader,
const mi::IMap* importer_options,
mi::neuraylib::IImpexp_state* import_state) const
{
// Create the importer result instance for the return value. If that fails something is really
// wrong and we return 0.
mi::neuraylib::IImport_result_ext* result
= transaction->create<mi::neuraylib::IImport_result_ext>("Import_result_ext");
if(!result)
return 0;

// Get the ’'prefix’ option.
std::string prefix;
if(importer_options && importer_options->has_key("prefix")) {
mi::base::Handle<const mi::IString> option(
importer_options->get_value<mi::IString>("prefix"));
prefix = option->get_c_str();

}

// Get the 'list_elements’ option.
bool list_elements = false;
if(importer_options && importer_options->has_key("list_elements")) {
mi: :base::Handle<const mi::IBoolean> option(
importer_options->get_value<mi::IBoolean>("list_elements"));
list_elements = option->get_value<bool>();

// Before we start parsing the file, we create a group that collects all top-level elements.
// This will be our rootgroup.
std::string root_group_name = prefix + "Vanilla::root_group";
mi: :base::Handle<mi: :neuraylib: :IGroup> rootgroup(

transaction->create<mi::neuraylib: :IGroup>("Group"));
mi::Sint32 error_code = transaction->store(rootgroup.get(), root_group_name.c_str());
if(error_code '= 0)

return report_message(result, 4010, mi::base::MESSAGE_SEVERITY_ERROR,

"failed to create the root group", import_state);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 362

20 Source code for examples 20.33 vanilla_importer.h

rootgroup = transaction->edit<mi::neuraylib::IGroup>(root_group_name.c_str());

// Register the rootgroup with the importer result.
result->set_rootgroup(root_group_name.c_str());

// If the element list flag is set, record the rootgroup element also in the elements array of
// the result.
if(list_elements)

result->element_push_back(root_group_name.c_str());

// Assume it is a line based text format and read it line by line. Assume lines are no longer
// than 256 chars, otherwise read it in pieces

char buffer[257];

while(reader->readline(buffer, 257) && buffer[0] !'= '\@') {

// Periodically check whether the transaction is still open. If not, stop importing.
if(!transaction->is_open())
break;

// Here you can process the buffer content of size len. It corresponds to the line
// import_state->get_line_number() of the input file.
mi::Size len = std::strlen(buffer);

// We illustrate some actions triggered by fixed line numbers: Line 3 of a ".vnl" file
// triggers the recursive inclusion of the file "test2.van" file with a prefix.
mi::Size ext_len = std::strlen(extension);

if(3 == import_state->get_line_number()
&& (ext_len > 3)
&& 0 == strcmp(extension + ext_len - 4, ".vnl")) {

// Get a IImport_api handle to call its import_elements() function
mi::base::Handle<mi: :neuraylib: :IImport_api> import_api(
m_plugin_api->get_api_component<mi::neuraylib::IImport_api>());
if(!import_api.is_valid_interface())
// Error numbers from 4000 to 5999 are reserved for custom importer messages like
// this one
return report_message(result, 4001, mi::base::MESSAGE_SEVERITY_ERROR,
"did not get a valid IImport_api object, import failed", import_state);
// Call the importer recursively to illustrate the handling of include files and similar
// things. We trigger this import only on a ".vnl" file and include the fixed file
// "test2.van". We give the included file an extra prefix "Prefix_".
mi::base::Handle<mi: :neuraylib::IFactory> factory(
m_plugin_api->get_api_component<mi::neuraylib::IFactory>());
mi::base::Handle<mi: :IString> child_prefix(factory->create<mi::IString>("String"));
child_prefix->set_c_str("Prefix_");
mi::base::Handle<mi: :IMap> child_importer_options(factory->clone<mi: :IMap>(
importer_options));
child_importer_options->erase("prefix");
child_importer_options->insert("prefix", child_prefix.get());
mi::base::Handle<const mi::neuraylib::IImport_result> include_result(
import_api->import_elements(transaction, "file:test2.van",
child_importer_options.get(), import_state));
// Safety check, if this fails, the import is not continued.
if(!include_result.is_valid_interface())
return report_message(result, 4002, mi::base::MESSAGE_SEVERITY_ERROR,

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 363

20 Source code for examples 20.33 vanilla_importer.h

"import was not able to create result object, import failed", import_state);
// Process the result. Even in the case of an error, we need to process the elements
// array.
if(list_elements)
result->append_elements(include_result.get());
// Append messages of include to this result
result->append_messages(include_result.get());
// React on errors during processing of the include
if(include_result->get_error_number() > 8) {
// Report the failure of the include as a separate message too
report_message(result, 4003, mi::base::MESSAGE_SEVERITY_ERROR,
"including file ’'test2.van’ failed.", import_state);
} else {
// Recursive import was successful. The rootgroup of the import is now appended to
// this rootgroup
if(@ == include_result->get_rootgroup())
report_message(result, 4004, mi::base::MESSAGE_SEVERITY_ERROR,
"include file ’'test2.van’ did not contain a rootgroup", import_state);
else
rootgroup->attach(include_result->get_rootgroup());

// Line 4 triggers several messages and adds an empty group to the rootgroup.
if(4 == import_state->get_line_number()) {

// Several messages, file parsing continues

report_message(result, 4005, mi::base::MESSAGE_SEVERITY_FATAL,
"test message in line 4", import_state);

report_message(result, 4006, mi::base::MESSAGE_SEVERITY_ERROR,
"test message in line 4", import_state);

report_message(result, 4007, mi::base::MESSAGE_SEVERITY_WARNING,
"test message in line 4", import_state);

report_message(result, 4008, mi::base::MESSAGE_SEVERITY_INFO,
"test message in line 4", import_state);

report_message(result, 4009, mi::base::MESSAGE_SEVERITY_VERBOSE,
"test message in line 4", import_state);

// Create a group "Vanilla: :Group1"
std::string group_name = prefix + "Vanilla::Group1";
mi::base::Handle<mi: :neuraylib: :IGroup> group(
transaction->create<mi: :neuraylib::IGroup>("Group"));
mi::Sint32 error_code = transaction->store(group.get(), group_name.c_str());
if(error_code !'= 0)
report_message(result, 4011, mi::base::MESSAGE_SEVERITY_ERROR,
"unexpected error in line 4", import_state);
else {
// Add this group to the rootgroup
rootgroup->attach(group_name.c_str());
// If get_list_elements_flag is set, record the new element in the elements array of
// the result.
if(list_elements)
result->element_push_back(group_name.c_str());

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 364

20 Source code for examples 20.33 vanilla_importer.h

// Handle line numbers, buffer might end in '\n’' or not if line was too long.
if((len > 8) && ('\n’ == buffer[len-1]))
import_state->incr_line_number();

if(reader->eof()) {
// Normal end
return result;

}

// Report error condition for a failed reader call
return report_message(
result,
static_cast<mi: :Uint32>(reader->get_error_number()),
mi: :base: :MESSAGE_SEVERITY_ERROR,
reader->get_error_message() ? reader->get_error_message() : "",
import_state);

© 2024 NVIDIA Corporation NVIDIA Iray - Programmer’s Manual 365

	 Preface
	 Purpose of this document
	 Audience
	 How this document is organized
	 API symbols and namespaces

	Getting started
	Iray release components
	Example programs
	How to compile a program
	Contents of the release
	Procedure

	How to run a program
	Starting and shutting down the Iray API
	Loading and accessing the neuray library
	Authenticating an application against the neuray library
	Start-up and shutdown
	Example – Start-up and shutdown
	Example – Shared header file

	A first image
	Configuration
	Accessing the database
	Importing a scene file
	Rendering a scene
	Example – Importing and rendering a scene file

	Library design
	API modules
	Shared library
	Naming conventions
	Include files
	Main include files
	Sub-include files

	Include file compile-time configuration
	Base API configuration options for assertions
	Base API configuration options for STL use
	Math API configuration options for assertions
	Iray API configuration options for assertions

	Main API access point
	Version numbers and compatibility
	API Version of a shared library
	Major and minor API product version

	Interfaces
	Reference counting
	Example 1
	Example 2

	Handle class
	Example 1
	Example 2

	Resources
	Strings
	Error handling
	Database, transactions and scopes
	Transactions
	Database scopes

	Runtime configuration
	Logging configuration
	Example – Configuring the Iray API
	Threading configuration
	Memory configuration
	Rendering configuration
	Networking configuration
	TCP/IP networking
	Failure recovery
	Dynamic scheduling configuration changes
	Administrative HTTP server

	Rendering
	Rendering overview
	Rendering and canvases
	Progress reports
	Abstract classes

	Render mode selection
	Progressive rendering of a scene
	Progressive rendering
	Example – Progressively rendering a scene

	Section objects
	Instancing
	User control of instancing
	Increasing computational precision and accuracy

	Custom canvas class
	Customized rendering infrastructure

	Asynchronous rendering
	Multiple render contexts
	Denoising
	Simple degraining filter
	Deep Learning-based Denoiser

	Deep-learning-based SSIM predictor
	Controlling the SSIM predictor
	Progress information
	SSIM predictor performance
	SSIM predictor limitations

	Matte fog

	Iray Photoreal
	Introduction
	System requirements
	Limitations
	Result canvases
	Support of light path expressions
	Materials
	Decals
	Rendering
	Picking

	Matte objects and matte lights
	Introduction
	Attributes
	Scene Option
	Example
	Additional notes and limitations

	Ghost lights
	Refractive objects and IOR handling
	Modeling Complex Refractive Objects

	Progressive rendering
	Progressive rendering modes, updates and termination
	Convergence quality estimate
	Deprecated attributes

	Spectral rendering
	Caustic sampler
	Guided sampling
	Motion vectors
	Rendering options
	Mixed mode rendering and load balancing
	Timeout prevention
	Progress information
	Global performance settings

	Iray Interactive
	Introduction
	Purpose
	Key Features

	System requirements
	Limitations
	Result canvases
	Materials
	Rendering
	Picking
	Multi-GPU Configurations
	Instancing
	Fibers
	Mixing GPU and CPU rendering
	CPU fallback

	Progressive rendering
	Multi-GPU scalability and automatic sample count adaption

	Lighting
	Rendering options
	Ambient occlusion and lighting
	Indirect lighting
	Shadows
	Additional approximations
	Antialiasing and filtering
	Environment map resolution
	White mode

	Path space filtering
	Global performance settings
	Comparison with Iray Photoreal

	Scene database
	Overview of the scene database elements
	Scene graph structure
	Leaf nodes
	MDL-related elements
	Miscellaneous classes

	Creating a scene programmatically
	Comparison to scene file main.mi
	Order of scene element creation
	Procedure for scene element creation
	Editing scene topology
	Categorizing scene elements
	Example – Creating a scene through the API

	Geometry
	Creating triangle meshes
	Creating a triangle mesh
	Adding geometry to a scene
	Retrieving and editing triangle meshes
	Example - Using triangle meshes

	Creating polygon meshes
	Creating a polygon mesh
	Tessellating a polygon mesh
	Example - Adding a polygon mesh to a scene

	Creating on-demand meshes
	Example - Using on-demand meshes

	Creating subdivision surfaces
	The control mesh
	Instancing objects
	Example - Using subdivision surfaces

	Creating free-form surfaces
	Creating a free-form surface
	Adding free-form objects to a scene
	Example - Using free-form surfaces

	Creating fibers
	The geometry of a fiber
	The fiber control points
	The IFibers object
	Adding a single fiber to the IFibers object
	Example - Creating fibers

	Creating particles
	The geometry of particles
	The IParticles object
	Adding particles to the IParticles object
	Example - Creating particles

	Tessellation and displacement
	Parametric tessellation
	Length tessellation
	Distance ratio tessellation
	Displacement

	Materials
	Material Definition Language
	Overview
	Additional Information
	Integration in Iray
	Hair Materials and Fiber Geometry
	Bump mapping energy loss compensation

	Measured materials
	Measured isotropic BSDF
	Spatially varying BSDF
	Measured reflection curve
	Measured light profile

	Editing and creating materials
	Modifying inputs of existing material instances
	Creating new material instances
	Attaching function calls to material inputs
	Example – Using MDL materials and functions

	Decals
	Decal scene element
	Placement of decals in space
	Layering and placement of decals on objects
	Selectively enabling and disabling decals in the scene graph

	Inhomogeneous volumes
	Volumetric textures
	Colors
	Density relative to size
	Interpolation

	Inhomogeneous volumes as subsurface materials
	Volume objects
	Example - Creating a volume object

	Emission
	Restrictions
	Atmospheric ground fog
	Best practice

	Sources of light
	Concepts of light representation in Iray
	Emission distribution functions
	Types of emission distribution functions

	Light distribution from scene elements
	Point and spot lights
	Directional lights
	Area lights
	Light-emitting objects

	Environment dome
	Environment function
	Environment dome options
	Implicit ground plane

	Camera
	Tonemapping
	Photographic tonemapper
	Exposure control
	Compression
	Post effects

	Custom tonemapper

	Bloom filter
	Lens
	Virtual backplate
	Motion blur

	Physically plausible scene setup
	Recommendations for geometry preparation
	Modeling glass
	Modeling volumes
	Neighboring volumes
	Enclosed volumes
	Defining priorities

	Mapping uv-coordinates
	Tessellating curved surfaces

	Recommendations for lights
	Using photometric lights
	Using environment and sunlight

	Recommendations for materials
	Recommendations for cameras
	Depth of field

	Networking
	Networking overview
	Networking modes
	No networking
	UDP mode
	TCP mode
	TCP mode with discovery
	Example – Starting the API in networking mode

	Iray Bridge
	Network architecture
	Client integration
	Server integration
	Render modes
	Upload progress
	Video modes
	Interactive Scheduler Modes
	Batch Scheduler Mode

	Render context options
	Server configuration options
	Video streaming options
	Photoreal Cloud render mode options
	IQ Cloud render mode options
	Interactive Cloud render mode options

	Server-side data cache
	Proxy scene element
	Scene snapshots
	Example – Rendering a scene with Iray Bridge
	Element Data Override Render Context Option

	Server-based rendering
	Example – Running an HTTP server
	RTMP server
	RTMP client
	Example – Running an interactive video-streaming server

	Customization
	Extending the database with user-defined classes
	Defining the interface of a user-defined class
	Implementing a user-defined class
	Example – A user-defined class

	Extending neuray with plugins
	Implementing a plugin
	Loading a plugin
	Example – Creating a plugin

	Extending supported file formats with plugins
	Implementation of an importer
	Implementing an importer
	Registering an importer
	Example – Creating an importer for a custom file format

	Implementation of an exporter
	Implementing an exporter
	Registering an exporter
	Example – Creating an exporter for a custom file format

	Example – Creating an image exporter for Photoshop
	Implementing an image exporter
	Using the PSD example exporter

	Reference
	Supported file formats and URI schemes
	URI schemes
	Scene file formats
	The .axf material file format
	Prerequisites before importing AxF files
	Importing AxF files
	Import results in the database

	The mi_importer plugin
	Importer configuration

	The mi_exporter plugin
	Exporter configuration

	Image file formats
	Binary storage format

	Render target canvases
	Canvas names

	Light path expressions
	Introduction
	Events
	Handles
	Sets and exclusion
	Abbreviations
	Constructing expressions
	Special events
	Advanced operations
	Matte object interaction
	LPEs for alpha control
	Example LPEs
	Summary of typical LPEs
	Light path expression grammar

	Bibliography
	Source code for examples
	example_bridge_client.cpp
	example_bridge_server.cpp
	example_configuration.cpp
	example_exporter.cpp
	example_fibers.cpp
	example_freeform_surface.cpp
	example_http_server.cpp
	example_importer.cpp
	example_mdl.cpp
	example_networking.cpp
	example_on_demand_mesh.cpp
	example_particles.cpp
	example_plugins.cpp
	example_polygon_mesh.cpp
	example_progressive_rendering.cpp
	example_psd_exporter.cpp
	example_render_target_advanced.h
	example_rendering.cpp
	example_rtmp_server.cpp
	example_rtmp_server.mxml
	example_rtmp_server_actionscript.as
	example_scene.cpp
	example_shared.h
	example_start_shutdown.cpp
	example_subdivision_surface.cpp
	example_triangle_mesh.cpp
	example_user_defined_classes.cpp
	example_volumes.cpp
	imy_class.h
	my_class.h
	plugin.cpp
	vanilla_exporter.h
	vanilla_importer.h

